bannerbanner
Зачем нужна геология. Краткая история прошлого и будущего нашей планеты
Зачем нужна геология. Краткая история прошлого и будущего нашей планеты

Полная версия

Настройки чтения
Размер шрифта
Высота строк
Поля
На страницу:
2 из 3

Читателям, заинтересовавшимся этими исследованиями, можно предложить познакомиться с работами Берджесса, Мюрхеда и Боуринга; Хе Суня и др.; Клэпхэма и Ренне (см. библиографию в конце книги).

Парниковая Земля во времена пермско-триасовой границы находится на одном краю спектра температур. На противоположном краю спектра располагаются ледниковые периоды, когда планету сковывал холод. Особо следует отметить интервал времени в конце протерозойского эона – примерно между 850 и 630 миллионами лет назад – который называется криогением (см. рисунок 21). Именно в это время Земля пережила два продолжительных периода экстремального холода, когда ледники простирались до тропиков, а океаны, возможно, были полностью покрыты льдом (состояние Земли-снежка).

Десять лет назад, когда эта книга была впервые опубликована, теория Земли-снежка вызывала споры. Но благодаря новым исследованиям эта идея получила широкое признание. Как и в случае обсуждавшегося выше пермско-триасового вымирания, ключевым элементом здесь стали новые точные измерения возраста и тщательный учет геологических условий для образцов, использованных для датировки. Данные показывают, что первое состояние Земли-снежка длилось более 55 миллионов лет, с 717 до 660 миллионов лет назад; второй эпизод был короче – примерно с 641 по 635 миллионов лет назад. Крайне важно отметить, что измерения на всех континентах и по всему криогению показывают: начало и окончание ледниковых событий были синхронными на всех континентах, и только в этих двух интервалах существуют отложения, типичные для ледникового периода.

Новые исследования подтверждают, что условия Земли-снежка были экстремальными. Например, ученые детально сравнили ледниковые отложения, появившиеся во времена Земли-снежка и во время недавних ледниковых периодов (в частности, плейстоценового ледникового периода, описанного в главе 8). Они обнаружили, что отложения Земли-снежка накапливались чрезвычайно медленно – в десять и более раз медленнее, чем это было во времена более поздних ледниковых периодов; а это означает экстремальные и продолжительные холод и сухость. Они подчеркивают уникальную природу этих промежутков времени: по их словам, скорость накопления гляциальных отложений в состоянии Земли-снежка была самой медленной в истории планеты.

В главе 7 мы коснемся предположений ученых о том, что состояние Земли-снежка всякий раз резко заканчивалось, когда вулканический углекислый газ вызывал глобальное потепление. Недавние исследования наземных ледниковых отложений на Шпицбергене в Арктике подтвердили этот вывод, хотя тут есть тонкость. Специалисты, участвовавшие в этой работе, провели детальное обследование осадочной толщи, отложившейся в конце второго эпизода Земли-снежка (примерно 635 миллионов лет назад). В то время Шпицберген располагался в тропиках. Они обнаружили, что отложения говорят не об одном резком отступлении ледников, а о целой серии отступлений и наступлений, напоминающих циклы Кролля – Миланковича для плейстоценового ледникового периода (см. главу 8). Моделируя поведение низкоширотных ледяных щитов при различных сценариях, они смогли показать, что параметры орбиты, которые влияют на количество солнечной энергии, попадающей на Землю, и являются причиной циклов Кролля – Миланковича, могли воздействовать и на ледники Земли-снежка во времена относительно быстрого перехода между ледниковыми условиями и последующим парниковым климатом. Таким образом, модели подтвердили то, что, по-видимому, демонстрировали и полевые данные: эпизод Земли-снежка закончился не внезапным переключением в теплое состояние, а сложным переходным периодом, в течение которого мировые температуры повышались и понижались под влиянием параметров орбиты планеты.

Подробнее об этих исследованиях можно прочитать в работах Бенна и др., Руни и др., Макленнана и др., Крокфорда и др. (см. библиографию в конце книги).

Наконец, мы подошли к вопросу об антропогенном изменении климата (глава 13). Почти наверняка это та область наук о Земле, в которой за последнее десятилетие достигнуты наиболее масштабные успехи – в первую очередь за счет разработки и уточнения косвенных показателей, которые могут отслеживать различные параметры окружающей среды в разные моменты прошлого Земли, а также за счет развития и уточнения климатических моделей, что стало возможным благодаря повышению вычислительных мощностей компьютеров. Эти показатели позволяют нам оценивать, как планета реагировала на прошлые экстремальные климатические условия, а с помощью итеративного процесса сравнения результатов моделирования с данными косвенных показателей мы получили возможность более точно определять процессы и механизмы, которые контролировали изменения климата в прошлом. Это, в свою очередь, привело к увеличению уверенности в прогнозах климата в будущем при различных сценариях выбросов парниковых газов – в некоторых случаях вплоть до регионального уровня.

Климатологи более пятидесяти лет пишут об антропогенном глобальном потеплении. Однако наука продвигается вперед, уточняя предыдущие исследования, совершенствуя процедуры и обнаруживая недостатки в предыдущих рассуждениях, поэтому к прогнозам и категорическим утверждениям ученые проявляют естественную настороженность. В результате до недавнего времени большинство климатологов с большой осторожностью связывали экстремальные погодные явления с антропогенным глобальным потеплением. Но все меняется. Сейчас газеты, телевизор и интернет регулярно бомбардируют нас историями о наводнениях, лесных пожарах, аномальной жаре и засухах, приводя при этом слова специалистов, что главным фактором тут является влияние человека на климат. Связь устанавливается обычно в виде вероятностных, а не абсолютных утверждений, однако идея ясна: по мере того, как планета нагревается, такие экстремальные события становятся все более вероятными.

В 1988 году Организация Объединенных Наций создала Межправительственную группу экспертов по изменению климата (МГЭИК), поставив перед ней задачу оценки рисков антропогенного изменения климата и создания докладов по этим вопросам. В настоящее время группа представляет 195 стран. Сейчас она завершает свой шестой доклад, который предполагается опубликовать до конца 2022 года. Как и предыдущие доклады, он охватывает работы тысяч ученых по всему миру и обеспечивает политикам и общественности понимание изменений в климате, вызванных деятельностью человека.

Одна из рабочих групп, участвовавших в этой работе, уже опубликовала свой раздел доклада в виде проекта. Он называется «Изменения климата 2021: физические основы» и базируется на исчерпывающем обзоре последних климатических моделей, рецензируемых исследований и палеоклиматических данных. В начале документа авторы делают следующий вывод: «Несомненно, человеческая деятельность разогрела атмосферу, океан и сушу. Произошли масштабные и быстрые изменения в атмосфере, океане, криосфере и биосфере». Через несколько страниц отмечается, что «перемены, вызванные человеческой деятельностью, уже сказываются на многих погодных и климатических экстремальных явлениях во всех регионах мира». Заключения из этого отчета, особенно касающиеся возможных вариантов климата в будущем, в значительной степени опираются на те разновидности числовых моделей и данных из прошлого нашей планеты, которые обсуждались в этом предисловии. Когда в августе 2021 года появился этот документ, британская газета The Guardian назвала его «самым явным предупреждением… о серьезных, неизбежных и необратимых изменениях климата», сделанным МГЭИК.

Частота экстремальных погодных явлений за последние годы продолжает расти, и в результате реальность перемен в климате стала очевидной для всех. Недавние исследования (в том числе вошедшие в доклад МГЭИК) устанавливают связь климата и антропогенной деятельности так прочно, что правительства разных стран с запозданием начинают замечать проблему. Когда я пишу это предисловие, в шотландском городе Глазго вот-вот начнется крупная международная конференция по климату – COP26. В ней примут участие почти 140 мировых лидеров, тысячи ученых, бизнесменов, государственных деятелей и других лиц. Цели грандиозны. Среди них – добиться нулевых выбросов углерода к середине XXI века. Если это удастся сделать, то можно будет предотвратить некоторые ужасные последствия, предсказываемые климатическими моделями при сохранении текущего положения дел.

Когда я пишу эти строки в октябре 2021 года, на острове Ла Пальма извергается вулкан Кумбре-Вьеха; пепел и лава безжалостно уничтожают дома и всю местность. Это пример деятельности нашей динамичной планеты, и пострадавшие мало что могут сделать – разве что покинуть зону бедствия. Однако когда речь идет о других явлениях – например, столкновениях с околоземными объектами или изменениях климата, – мы должны применить свой научный опыт и технические возможности во избежание наихудших сценариев, и для этого нужно проявить политическую волю. Вулкан на острове Ла Пальма – напоминание, что Земле нет дела до нас. Но нам есть дело до своей планеты. Мы должны заботиться о ней.

Дуг МакдугаллЭдинбург, ШотландияОктябрь 2021

Предисловие

Земля – не осколок мертвой истории, не пласты, слежавшиеся, как листы в книге, интересные для одних лишь геологов и антиквариев; это – живая поэзия, листы дерева, за которыми следуют цветы и плоды; она – не ископаемое, а живое существо.

Генри Дэвид Торо,«Уолден, или Жизнь в лесу»[7]

В этом отрывке Торо непреднамеренно коснулся того, что геологи и другие ученые, изучающие Землю, осознавали давно, и что в последние годы становится все более важным для понимания нашей планеты: Земля не статична, она динамична и постоянно изменяется. Она не живая в полной мере, но ее части непрерывно взаимодействуют друг с другом, и это обуславливает колоссальные перемены, происходящие с планетой на протяжении истории. Один из способов «прочитать» ее – как у Торо, по пластам, подобным листам в книге; но есть и другие способы, которые появятся в последующих главах.

«История повторяется» – это выражение, которое обычно используют, чтобы напомнить нам: изучая историю, мы можем избежать ошибок прошлого. Это может быть правдой – по крайней мере, иногда. И тем не менее существуют люди – например Нассим Талеб, автор «Черного лебедя» – которые утверждают прямо противоположное: история отнюдь не является хорошим путеводителем по будущему, а мир сформирован событиями исключительными и не имеющими прецедентов – а потому в основном непредсказуемыми. Но даже сторонники этой точки зрения не считают, что нам следует становиться фаталистами, а полагают, что нужно научиться ожидать неожиданного. Но если так, то стоит ли вообще изучать историю?

В случае Земли ответить просто, поскольку только знание прошлого нашей планеты дает возможность предвидеть ее будущее. Да, Природа может столкнуть нас с неожиданностями: жестокой бурей, разрушительным землетрясением, цунами или падением астероида. Однако неожиданными они являются только потому, что редко происходят на нашей памяти. Но на протяжении истории Земли эти события случались многократно, и они подчиняются законам физики и химии. Вот почему так важно расшифровать прошлое Земли: в будущем будут действовать те же самые физические и химические принципы, которые управляли нашей планетой с момента ее образования. История в самом деле повторится – если не в деталях, то хотя бы в общих чертах. Студентов-геологов часто учат, что настоящее – ключ к прошлому. Однако специалисты, изучающие Землю, также понимают, что во многих отношениях прошлое – это ключ к будущему.

Земля существует очень давно – 4,5 миллиарда лет. Этот огромный промежуток времени трудно вообразить, однако при таком количестве времени даже геологические процессы, которые идут со скоростью улитки – например эрозия гор или движение литосферных плит – в конечном итоге приведут к огромным переменам на планете. Пусть через миллионы лет, но Альпы превратятся в равнину, а Лос-Анджелес проскользнет мимо Сан-Франциско, направляясь на север вдоль разлома Сан-Андреас.

Над такими прогнозами интересно размышлять, однако ясно, что это дело отдаленного будущего. Этого не увидят ни читатели этой книги, ни их правнуки. С гораздо большей вероятностью мы столкнемся с последствиями некоторых имеющих отношение к геонаукам проблем, о которых слышим ежедневно: наводнения, ураганы, извержения вулканов, вырубка лесов, исчезновение видов, нехватка полезных ископаемых – список можно продолжать. А ведь я еще не упомянул о самом важном – изменении климата. Проблема в том, что большинство людей, не знакомых с науками о Земле, не имеют четкого представления о том, как работают процессы, затрагивающие нашу повседневную жизнь и наше будущее. Это верно даже в отношении многих из тех людей, которые должны управлять реакцией общества на такие проблемы. К сожалению, наукам о Земле в системе образования обычно уделяют мало внимания. Например, по данным Американского геологического института, в Техасе – штате, где геонауки весьма важны для экономики – курс наук о Земле есть всего у двух процентов девятиклассников. Для биологии этот показатель составляет 95 процентов. Я надеюсь, что эта книга хоть в какой-то степени стимулирует у читателей интерес к геологии и поможет улучшить ситуацию.

Поскольку знание прошлого Земли – весьма важная составляющая понимания того, как наша планета работает сегодня и будет работать в будущем, эта книга, помимо рассказа о конкретных темах – например, землетрясениях и ударах астероидов – рассматривает в хронологическом порядке некоторые важные события, которые влияли на Землю за последние 4,5 миллиарда лет. Главы, посвященные истории Земли, чередуются с главами, посвященными конкретным событиям и процессам; я надеюсь, что такое построение книги, пусть оно и не традиционно, окажется и полезным, и интересным. Я старался по возможности не вязнуть в сложных научных дискуссиях, но при этом все же придерживаться основных идей обсуждаемых исследований.

XXI век – захватывающее время для специалистов по геонаукам. Типичный, стереотипный геолог, карабкающийся на гору с геологическим молотком, все еще существует – и играет важную практическую роль. Однако к молотку теперь добавляется обильный инструментарий, который позволяет изучать Землю и Солнечную систему с беспрецедентной детализацией: спутники, суперкомпьютеры, электронные микроскопы, масс-спектрометры, системы беспроводной связи, подводные аппараты и космические корабли – и это далеко не все. Одним из астронавтов, побывавших на Луне, был геолог Харрисон Шмитт (он привез на Землю образцы горных пород). Специалисты, изучающие Землю, постоянно спускаются на многокилометровые глубины в батискафах, надевают защитную одежду, чтобы взять пробы газов, выделяющихся из действующих вулканов, отправляют автономные дрейфующие буи собирать данные в океанах, или бросают вызов опасностям Антарктики, добывая ледяные керны, чтобы получить данные о климате прошлых эпох. Некоторые работают в чистых лабораториях с такими крохотными образцами, что одна частичка пыли или отпечаток пальца могут испортить анализ; другие загружают собранные данные в суперкомпьютеры, чтобы создать трехмерные изображения различных частей Земли. Многие из этих людей не станут автоматически причислять себя к геологам – они изучали не только геологию, но и математику или океанографию. Однако все они вносят свой вклад в междисциплинарное изучение прошлого, настоящего и будущего нашей планеты. Именно в этом смысле используется слово геология в названии этой книги: геология – это изучение Земли в широком смысле.

Поводом к написанию этой книги отчасти послужило желание поделиться тем, что геологи узнали о нашей потрясающей планете за последние десятилетия. Другим источником была моя убежденность в том, что геоисследования действительно важны для нашего будущего. Надежное управление водными, минеральными и энергетическими ресурсами, защита биологического разнообразия, планирование изменений климата и геологических рисков – все это зависит от того, насколько мы понимаем устройство Земли как системы и ее реакции на различные условия в прошлом. Я надеюсь, что моя книга донесет эту идею и в то же время даст представление о том, как ученые стремятся к этому пониманию.

Благодарности

Появлению этой книги способствовали многие люди. Я особенно благодарен двум рецензентам первоначальной рукописи, профессорам Ричарду Коуэну и Эрнесту Зебровски, которые сделали множество ценных замечаний, обнаружили ошибки и в целом указали на способы сделать книгу более привлекательной. Блейк Эдгар и Дор Браун из издательства Калифорнийского университета усердно старались, чтобы рукопись соответствовала их высоким редакционным стандартам. Все оставшиеся недостатки – исключительно моя вина.

Мой агент Рик Балкин, как всегда, оказывал неоценимую поддержку и давал полезные советы на протяжении всей работы – от идеи до итоговой рукописи. Я уверен, что текст книги значительно улучшают фотографии, которые любезно предоставили Абигайль Олвуд, Рик Отто, Джим и Ребекка Брюн. Я также благодарен Геологической службе США и НАСА за их политику «открытого использования»; этим организациям принадлежат несколько изображений, использованных в книге. Спасибо также Рону Блейки за разрешение использовать его палеокарты в качестве основы для нескольких иллюстраций, а также Зигфусу Джонсену и Центру льда и климата Института Нильса Бора за разрешение воспроизвести диаграмму из книги Вилли Дансгора «Замороженные анналы».

Глава 1

Увековечено в камне

В 1969 году, когда я учился в Калифорнии, астрологи, ясновидящие и проповедники запустили волну предсказаний о разрушительном землетрясении, после которого штат (или, по крайней мере, большая его часть) уйдет под воду. Провидцы утверждали, что это произойдет в апреле, хотя согласия насчет точной даты не было. Некоторые люди отнеслись к этой новости очень серьезно, продали свои дома и переехали в другое место. Другие, не такие осторожные, просто искали место повыше 4 апреля – в день, когда предсказатели обещали эту катастрофу. Карикатуристы и газетные обозреватели вволю повеселились, высмеивая страхи перед землетрясением, а для нас, студентов-геологов, эта кутерьма казалась не только забавной, но и несколько странной. В полиции, пожарных частях и на геологических факультетах университетов раздавались тысячи тревожных звонков от нервных граждан. Рональду Рейгану, тогдашнему губернатору штата, пришлось объяснять, что его отпуск за пределами штата был запланирован заранее и никакого отношения к землетрясению не имеет. Мэр Сан-Франциско запланировал «антисейсмическую» вечеринку на 18 апреля – в шестьдесят третью годовщину крупного землетрясения в Сан-Франциско в 1906 году. Он заверил общественность, что вечеринка состоится на суше.

Естественно, Калифорния в 1969 году не провалилась в море, и сильного землетрясения вообще не произошло (хотя землетрясения были, как это случается каждый год, но большинство из них оказались совсем слабыми). Астрологи не могут предсказывать землетрясения (да и остальное тоже). Как мы увидим далее, даже представители геонаук, располагающие подробными научными данными и самыми современными приборами, считают точное предсказание землетрясений труднодостижимым. Однако для многих других геологических явлений ситуация с прогнозированием обстоит намного лучше. И в основе такого прогноза лежит работа, которую традиционно выполняли геологи: расшифровка прошлого.

Но как именно они это делают? Куда смотрят ученые, чтобы найти ключи к деталям истории нашей планеты, и как они интерпретируют их? Такие вопросы лежат в основе этой книги, и ответ на них подсказывает название главы: ключи большей частью находят в камнях на поверхности Земли. (Существуют и другие природные архивы истории Земли – например, годичные кольца деревьев и антарктический лед. В частности, бесценную информацию о климате прошлых эпох дают ледяные керны. Но эти документы рассказывают только об относительно недавнем геологическом прошлом. Камни же позволяют смотреть на миллионы лет назад).

Для непосвященных камень – это просто камень, какой-то твердый неживой предмет, который можно пинком сбросить с дороги или швырнуть в пруд. Однако посмотрите внимательнее и задайте правильные вопросы – и он станет чем-то большим, или даже гораздо большим. Каждому камню на поверхности Земли есть что рассказать. Как образовалась эта порода? Когда она образовалась? Из чего она состоит? Какая у нее история? Как она попала сюда и откуда она взялась? Почему определенный вид горных пород в одном регионе распространен, а в другом – нет? Долгое время в странах Запада, преимущественно христианских, ответы на эти вопросы ограничивались религией. Считалось, что важную роль в формировании современного ландшафта сыграл библейский потоп, и объяснения многих геологических особенностей должны были строиться вокруг предполагаемой реальности этого события. Однако по мере укоренения идей Просвещения в семнадцатом и восемнадцатом веках, когда желавшие понять Землю начинали все тщательнее наблюдать за природой, влияние религии уменьшилось, и стали возникать более рациональные объяснения. Для геологии – дисциплины, уходящей корнями в поиск и добычу полезных ископаемых – существенным было еще и давление со стороны торговли. Те, кто лучше всего понимал, как образовывались жилы с золотом, или лучше всего знал, в каких геологических условиях они могут существовать, имели больше шансов найти очередную жилу.

Я не стану подробно останавливаться на истории развития геологии как науки или на деталях развития ранних геологических идей – об этом рассказывает множество других книг. Однако стоит указать на несколько ключевых ранних концепций, которые перевернули представления людей – не только учёных – о своей планете. Большинство таких интеллектуальных прорывов состоялось в Европе (особенно в Британии) в восемнадцатом и начале девятнадцатого веков; и, хотя к аналогичным выводам намного раньше пришли мыслители Ближнего Востока и других мест, именно европейские версии этих идей стали краеугольным камнем возникающей комплексной науки о Земле.

Что это были за идеи, и откуда они появились? Все они без исключения возникли в результате изучения выходов горных пород на поверхность и наблюдения за идущими геологическими процессами. Одна из новых концепций заключалась в том, что различные типы пород имеют разное происхождение, и сегодня это кажется достаточно очевидным. Однако в восемнадцатом веке популярно было представление, что все породы образовались в результате осаждения – либо в первичном мировом океане, либо в водах библейского потопа. Тех, кто отстаивал эту идею, по понятным причинам назвали нептунистами, и они не спешили отказываться от своих убеждений. Однако ситуацию изменили новые данные – например, наблюдения шотландского геолога Джеймса Хаттона, который описал обнажения, явно показывавшие, что некоторые породы когда-то были расплавленными. Изучая эти обнажения, Хаттон пришел к выводу, что текучий материал, ставший затем камнем, когда-то попал внутрь уже существовавших слоев, разрушил и нагрел их. Описание этих некогда расплавленных пород, не говоря уже о существовании активных вулканов (вроде Этны и Везувия в южной Европе), привело людей к осознанию, что внутри планеты должны находиться значительного резервуары тепла.

Вторая важная концепция заключалась в том, что медленные и непрестанные геологические процессы, которые можно легко увидеть (дождевые воды растворяют породы, реки прорезают каньоны, частицы оседают на дне моря), следуют законам физики и химии. Нам снова по прошествии времени кажется, что это очевидно, однако отсюда вытекало – и это стало революционной идеей для первых геологов – что геологические процессы прошлого должны были следовать тем же законам. Это означало, что физические и химические характеристики древних пород можно интерпретировать, наблюдая за современными процессами. Чарлз Лайель, выдающийся британский геолог своего времени, выдвинул эту идею в качестве необходимой для понимания истории Земли в своей книге «Основные начала геологии», впервые опубликованной в 1830 году. (Книга была настолько популярной, что выдержала множество изданий, и все еще выпускается в современной серии Penguin Classics). Лайель не был автором этой концепции, но он назвал ее «принципом униформизма», и название прижилось. Хотя само выражение уже не в моде, поколения студентов, изучающих геологию, узнавали, что на самом деле оно означает «настоящее – ключ к прошлому». И, хотя первые геологи в основном интересовались прошлым Земли, принцип униформизма можно перевернуть: по той же логике прошлое – это в некоторой степени ключ к будущему.

Наконец, самой революционной из новых концепций была такая: Земля крайне стара. Это шло вразрез как с общепринятыми взглядами тогдашних ученых, так и с религиозными догмами. Как и другие ранние геологические идеи, мысль о древней Земле формализовал Джеймс Хаттон, написавший: «Мы не находим ни следов начала, ни перспектив конца». (Эту фразу часто цитируют как описание концепции «глубокого времени» – геологического времени с медленным протеканием процессов). К концепции древней Земли Хаттона привело не одно конкретное наблюдение: этот вывод он сделал, объединив все свои исследования геологических процессов и обнажений горных пород; например, он видел огромную толщину слоев породы, состоящей из отдельных осадочных частиц, которые могли накопиться по крупинке только в течение невообразимо длительного промежутка времени.

На страницу:
2 из 3