bannerbanner
A History of Inventions, Discoveries, and Origins, Volume II (of 2)
A History of Inventions, Discoveries, and Origins, Volume II (of 2)полная версия

Полная версия

A History of Inventions, Discoveries, and Origins, Volume II (of 2)

Язык: Английский
Год издания: 2017
Добавлена:
Настройки чтения
Размер шрифта
Высота строк
Поля
На страницу:
7 из 55

No one has employed a greater profusion of words to maintain an opinion opposite to mine, than Abat; but when his proofs are divested of their ornaments, they appear so weak that one has very little inclination to agree with him. “The observation,” says he, “that a plate of glass is the best mirror, when all other rays of light, except those reflected back from the glass, are prevented, by a metallic covering placed behind it, from falling on the eye, is so easy, that it must have been made immediately after the invention of glass.” Who does not think here of Columbus and his egg? Instances occur in history of many having approached so near an invention, that we are astonished how they could have missed it; so that we may exclaim with a certain emperor, “Taurum toties non ferire difficile est175.” “The Sidonian invention,” continues he, “would not have been worth mentioning, had it not produced better mirrors than those which the ancients had before of the obsidian stone. But these even are mentioned only once, in so short and abrupt a manner, and as it were out of ridicule, that one may easily perceive they were not much esteemed.” “If the Sidonians,” adds he, “were not the inventors, let some other inventor be mentioned;” and he assures us that he had sought information on this subject, in Neri, Kunkel, and Merret, but without success. That I believe; but Abat does not remark that by the same manner of reasoning we may ascribe to the Sidonians the invention of watches, and many other articles, the inventors of which are not to be found in books where they ought as much to be expected as the inventor of glass in Neri. The grounds on which many old commentators of the Bible, Nicholas de Lyra and others, have supposed that glass mirrors were known so early as the time of Moses, are still weaker. If quoting the names of writers who entertain a like opinion be of any weight, I could produce a much greater number of learned men, who, after an express examination of the question, deny altogether that glass mirrors were used by the ancients.

Dr. Watson176 also has endeavoured to support the opinion of Abat, but with less confidence and with more critical acumen. His grounds, I think, I have weakened already; but one observation here deserves not to be overlooked, because it suggests an idea that may serve to illustrate a passage of Pliny, which, as I before remarked, has never yet been explained. “If we admit,” says he, “that Pliny was acquainted with glass mirrors, we may thus understand what he says respecting an invention, which was then new, of applying gold behind a mirror.” Instead of an amalgam of tin, some one had proposed to cover the back of the mirror with an amalgam of gold, with which the ancients were certainly acquainted, and which they employed in gilding177. He mentions, also, on this occasion, that a thought had once occurred to Buffon, that an amalgam of gold might be much better for mirrors than that used at present178. This conjecture appears, at any rate, to be ingenious; but when I read the passage again, without prejudice, I can hardly believe that Pliny alludes to a plate of glass in a place where he speaks only of metallic mirrors; and the overlaying with amalgam requires too much art to allow me to ascribe it to such a period without sufficient proof. I consider it more probable that some person had tried, by means of a polished plate of gold, to collect the rays of light, and to throw them either on the mirror or the object, in order to render the image brighter.

Professor Heeren showed me a passage in the Ecloga of Stobæus, which, on the first view, seems to allude to a glass mirror179. It is there said, Philolaus the Pythagorean believed that the sun was a vitreous body, which only received the rays of the æthereal fire and reflected them to us like a mirror. When we compare, however, the words of Stobæus with those by which Plutarch180, Achilles Tatius181, Eusebius182, and others, express the same thing, that meaning cannot be drawn from them. It appears, at first, as if Philolaus had considered the sun to be transparent, and supposed that the rays passed through it, and came condensed to our earth, in the same manner as they are brought to a focus by a glass globe. Some commentators have explained the passage in this manner; and on account of the affinity of the Greek words have thought also of a funnel. In that case, however, the comparison of the sun with a mirror would not have been just; and if it be admitted that Philolaus considered the sun as a bright body endowed with the property of reflection, what he says of rays passing or transmitted through it, and of the pores of the sun’s body, will become unintelligible. But even if we adopt the last explanation, that Philolaus imagined the sun to be a mirror, it does not follow that he had any idea of a glass one183; and besides, he only speaks of a body capable of reflecting a strong light; and that glass, under certain circumstances, is fit for that purpose, may have been remarked as soon as it was invented, though men might not find out the art of forming it into proper mirrors by placing some opake substance behind it184. Empedocles also said, that the sun was a mirror, and that the light received by our earth was the reflection of the æthereal fire, which Eusebius compares to the reflection made by water185.

In the problems ascribed to Alexander of Aphrodisias, glass mirrors, covered on the back with tin, are clearly mentioned; but this information does not lead us one step further in the history of the art; as it is proved that the above Alexander, who lived in the beginning of the third century, could not have written that work. The author, who must have been a physician, maintains the immortality of the soul, which Alexander of Aphrodisias, with Aristotle, denies. Some therefore have ascribed these problems to Alexander Trallianus, who practised physic in the middle of the sixth century; but this is only a conjecture which no one has as yet rendered probable, especially as there have been many physicians of the name of Alexander. The problem to which I allude is not to be found in every manuscript and edition; so that it is doubtful whether it may not be the production of a later author than that of the rest of the book, particularly as it is certain that many who had it in their possession added problems of various kinds according to their pleasure. However this may be, it is evident that the author of this problem was acquainted with mirrors covered at the back; and the expression which he uses does not merely imply that a leaf of tin was placed behind the glass plate, but that the tin in a liquid state was rubbed over it. The old French translator thinks that the author speaks of windows; but that opinion is undoubtedly false186.

Of as little importance as the above passage of Alexander, is another of Isidore, often quoted in support of the antiquity of glass mirrors. On the first view it appears to be a testimony of great weight; but when closely examined it becomes reduced to very little. “Nothing,” says he, “is so fit for mirrors as glass187.” Abat and others, who have considered these words as decisive, make less hesitation to ascribe to the sixth century, in which Isidore lived, a knowledge of mirrors covered on the back with tin and quicksilver, as the same writer, in another place, observes, that quicksilver can be kept in no vessel but one of glass188. It is very true that a glass filled with that metal will form a very good mirror; but I am of opinion that this may have been long known, before people thought of making an amalgam of tin and quicksilver in order to cover the backs of mirrors. The first passage, which is properly the one of any consequence, loses its force when we see that it is taken from Pliny and copied incorrectly. The latter says, that one can give to glass every kind of shape and colour, and that no substance is more ductile, or fitter to be moulded into any form189. Isidore, as is usual, says the same thing, and in the same words, except, that instead of sequacior he substitutes speculis aptior; so that the mention of a mirror is altogether unexpected, and so little suited to what goes before and what follows, that one must believe that this alteration, occasioned perhaps by the similitude of the words, or by an abbreviation, was not made by Isidore, but by some transcriber. But even if we believe that Isidore himself spoke of glass being used at that period for mirrors, we are not able to comprehend, from what he says, how glass mirrors were made in the sixth century.

I have met with no information respecting this subject in the whole period between the age of Isidore and the eleventh century. About the year 1100, at least as is supposed not without probability, Alhazen the Arabian wrote his well-known treatise on Optics, in which I conjectured that I should find mention made of glass mirrors; but I searched that work in vain, though I must confess I did not read it through entirely. Where he begins his catoptrical lessons, he however often speaks of iron mirrors, by which we may understand mirrors of the best steel. In explaining a certain phænomenon, he says, that the cause of it cannot be in the darkness of the iron mirror, because if a mirror of silver be used, the same effects will be produced. Would he not on this occasion have introduced glass mirrors, had he been as well-acquainted with them as with those already mentioned? At first, he never speaks of mirrors without adding of iron, of silver; but he mentions them afterwards without any epithet of the kind.

All these mirrors I find also in the Optics of Vitello, who wrote in the middle of the thirteenth century, in Italy, a country which was at that time almost the only one where the arts flourished190. That author has, indeed, borrowed a great deal from Alhazen, though there are many things of his own, and he gives an account of some experiments on the refracting power of glass; but he never, as far as I have observed, mentions glass mirrors. Whether Jordanus Nemorarius, or Nemoratius, who also wrote, in the thirteenth century, a book De Speculorum Natura, makes mention of them, I do not know, because I have never had an opportunity of seeing that work. I am of opinion it was never printed.

It is in the thirteenth century, that I find the first undoubted mention of glass mirrors covered at the back with tin or lead. Johannes Peckham, or Peccam, an English Franciscan monk, who taught at Oxford, Paris, and Rome, and who died in 1292, wrote about the year 1279 a treatise of optics, which was once printed, with the title of Johannis Pisani Perspectiva Communis191. In this work, besides mirrors made of iron, steel, and polished marble, the author not only speaks often of glass mirrors, but says also that they were covered on the back with lead, and that no image was reflected when the lead was scraped off. Vincentius Bellovacensis192 speaks in a manner still clearer, for he tells us that lead was poured over the glass plate while hot. To the same century also belong the concurrent testimonies of Raimundus Lullius193, Roger Bacon194, Antonius di Padua195, and Nicephorus Gregoras196, who died after the year 1360197.

That this invention cannot be much older we have reason to conclude, because glass mirrors were extremely scarce in France even in the fourteenth century, while mirrors of metal were in common use; and we are told that the mirror of Anne de Bretagne, consort of Louis XII., was of the latter kind198. Metal mirrors also were made and employed in Persia and the East, where indeed ancient usages continued longest, and glass mirrors were not known there till the commencement of the European trade with these remote regions. The former are still preferred in those countries, because they are not so liable to break, and can be preserved better in a dry hot climate than the amalgam of the latter.

Respecting the progress of this art, I know nothing more than what follows: – At first, melted lead, or perhaps tin, was poured over the glass plate while yet hot as it came from the furnace. This process agrees with that which, since very early periods, has been employed in or around Nuremberg for making convex mirrors by blowing with the pipe into the glass-bubble whilst still hot a metallic mixture, with a little resin or salt of tartar, which prevents oxidation and assists the fusion. When the bubble is covered all over in the inside, and after it has cooled, it is cut into small round mirrors. This art is an old German invention, for it is described by Porta and Garzoni, who both lived in the beginning of the sixteenth century, and who both expressly say, that it was then common in Germany. Curious foreigners often attempted to learn it, and imagined that the Germans kept it a secret. Boyle made various experiments in order to discover the process; and the secretary of the Royal Society endeavoured, by means of the ambassador from Charles II., who, perhaps about 1670, resided at Frankfort, to obtain a knowledge of it; but did not succeed, as we are told by Leibnitz199. It was called the art of preparing mirrors without foil; and it was highly esteemed, because it was supposed that it might be useful to those fond of catoptrics, by enabling them to form convex and concave mirrors themselves. This account of Leibnitz seems to have led Von Murr into a slight error, and induced him to believe that the art of making convex mirrors without foil was first found out at Nuremberg in 1670. I introduce this remark because I flatter myself he will not be displeased that I make the above service, rendered by his native city, to be a century and a half older. These small convex mirrors, which reflect a diminished, but a clearer image than our usual mirrors, are perhaps made still, though they are not now carried round so frequently for sale in Germany as they were thirty years ago, at which time, if I remember right, they were called (Ochsen-augen) ox-eyes. They were set in a round painted board, and had a very broad border or margin. One of them, in my possession, is two inches and a half in diameter. It is probable that the low price of plane mirrors, when glass-houses began to be more numerous, occasioned these convex ones to be little sought after. The mixture employed in making them was, according to Porta, antimony, lead, and colophonium; but according to Garzoni, it was una mistura di piombo, stagno, marchesita d’argento, e tartaro, which in the German edition is translated very badly, “lead, tin, flint, silver, and tartar.” The following observation perhaps is not altogether useless: Colophonium, which is employed on many other occasions for soldering, was formerly called mirror-resin, and was sold under that name even in the beginning of the present century. Frisch assigns no reason for this appellation, and Jacobson gives a wrong one, viz. its having a bright shining surface when broken. The true reason was the above-mentioned use; and as that is now very little known, it is called from that to which it is principally applied, violin-resin.

It appears that, instead of pouring melted metal over plates of glass, artists for some time applied to them the before-mentioned amalgam of tin, or covered them in some other manner, perhaps in the same way as Boyle covered concave glasses in the inside. Porta however saw almost the same process employed at Murano as that which is still followed at present. The tin, hammered to thin leaves, was spread out very smoothly; and quicksilver was poured over it, and rubbed into it, either with the hand or a hare’s foot; and when the tin was saturated it was covered with paper. The glass, wiped exceedingly clean, was then laid above it; and while the workman pressed it down with his left hand, he drew out very carefully with his right the paper that lay between the tin and the glass, over which weights were afterwards placed. This much at any rate is certain, that the method of covering with tin foil was known at Murano so early as the sixteenth century200, and therefore it is much older than J. M. Hoffmann supposes. To conclude, whether this ingenious invention belongs to the Venetians, as several later, and particularly Italian, writers assert, I can neither prove nor contradict; but it is well known that till about the end of the seventeenth century their mirrors were sold all over Europe and in both the Indies. After that period the glass-houses in other countries were improved, and new ones established; and the discovery made in France, that glass, like metal, could be cast into much larger plates than had been before prepared by blowing and rolling, was in more than one respect prejudicial to the sale of those made at Venice.

So early as the year 1634, attempts were made in France to establish glass-houses for manufacturing mirrors, and Eustache Grandmont obtained a patent for that purpose; but his undertaking was not attended with success. As Colbert exerted himself very much to promote manufactures of every kind, Nicholas de Noyer proposed to make mirrors according to the Venetian method. This plan was adopted by Charles Rivière, sieur du Freni, valet-de-chambre to the king; and having procured the royal permission, he sold it afterwards for a large sum to De Noyer, who, in 1665, received a confirmation of the patent, and an advance of 12,000 livres for four years, on condition of his procuring workmen from Venice, who, after serving eight years in the kingdom, were to be naturalized. De Noyer was joined by several more, who entered into partnership with him, and particularly by one Poquelin, who had hitherto carried on the greatest trade in Venetian mirrors, and who engaged workmen from Murano. The glass-houses were erected at the village of Tourlaville, near Cherbourg, in Lower Normandy. After the death of Colbert, who was succeeded by Louvois, the charter of the company was in 1684 renewed for thirty years longer, and at that period Pierre de Bagneux was at the head of it.

Scarcely had five years of this period elapsed, when, in 1688, Abraham Thevart made a proposal to the court for casting glass mirrors of a much larger size than any ever before made. This plan, after an accurate investigation, was approved; and in the same year he received the royal permission to use his invention for thirty years, but it was not registered till 1693 or 1694. The first plates were cast at Paris, and astonished every artist who saw them. They were eighty-four inches in height, and fifty in breadth. In order to lessen the excessive expense, the glass-houses were erected at St. Gobin, in Picardy; and to prevent all dispute with the old privileged company, Thevart was expressly bound to make plates at least sixty inches in length and forty in breadth, whereas the largest of those made before had never exceeded forty-five or fifty inches in length. On the other hand, the old company were allowed to make plates of a smaller size, and were prohibited from employing any of the instruments or apparatus invented by Thevart. These however had not been so accurately defined as to remove all cause of litigation between the companies, and for that reason permission was at length granted, in 1695, for both to be united into one, under the inspection of François Plastrier, to whom the king, in 1699, sold the palace of St. Gobin. After this they declined so rapidly, that in 1701 they were not able to pay their debts, and were obliged to abandon several of the furnaces. To add to their misfortune, some of the workmen whom they had discharged retired to other countries, which were already jealous of the French invention, and wished to turn it to their advantage. The French writers assert that their attempts never succeeded, and that most of the workmen returned again to France, when a new company was formed in 1702, under the management of Antoine d’Agincourt, who by prudent œconomy improved the establishment, so as to render the profit very considerable. At present mirrors are cast as well as blown, both at St. Gobin and at Cherbourg; and in 1758 the price of them was greatly reduced, in order probably to weaken the competition of the foreign glass-houses, among which there are many not inferior to the French.

This short history of the glass manufactories in France is collected from Savary201 and Expilly202. A more particular account perhaps may be expected of the inventor, of his first experiments, and of their success; but notwithstanding a strict search, I have not been able to find any further information on the subject. We are told only that his name was sieur Abraham Thevart, though the historians who record that circumstance have filled their pages with uninteresting anecdotes, and even with the vices of many of the courtiers of the same period.

The principal benefit which has arisen to the art from this invention, properly is, that much larger mirrors can be obtained than formerly; for when attempts were made to blow very large plates, they were always too thin. Casting, however, besides great expense in apparatus203, requires so many expert workmen, and so tedious and severe labour, and is accompanied with so much danger, that it is only seldom that plates of an extraordinary size succeed, and the greater part of them must be cut into smaller plates which might have been blown. Those cast are never so even and smooth as those that have been blown; they require therefore a great deal of polishing, and on that account must be very thick. The monstrous mass requisite for a mirror of the largest size, stands ready melted in a very frail red-hot earthen pot, which is taken from the furnace and placed upon an iron plate, strongly heated, that the mass may be cast upon it into a glass plate. The latter must then be speedily conveyed to the cooling-furnace, and if it be found free from faults, it is ground, polished and silvered; but the last part of the process is generally done at the place where a purchaser can be found for so expensive an article, in order that less loss may be sustained in case it should happen to break by the way.

These great difficulties, which have excited the astonishment of every one who has seen the process, and that of finding sale for so expensive and magnificent wares, have obliged artists to return to the old method of blowing; and many have been so fortunate in improving this branch of manufacture, that plates are formed now by blowing, sixty-four Flemish inches in height and twenty-three in breadth, which it was impossible to make before but by casting.

The mass of matter necessary for this purpose, weighing more than a hundred pounds, is by the workman blown into the shape of a large bag; it is then reduced to the form of a cylinder, and being cut up, is, by stretching, rolling it with a smooth iron, and other means, transformed into an even plane.

[All but the very commonest mirrors are now made of plate-glass; which is also used to a great extent for window-panes, and is manufactured by casting, rolling and polishing. The enormous plates of glass which are seen in many of the large shops of this city are well-calculated to excite the astonishment of those who are not yet aware of the late improvements in this branch of manufacture. An idea of what may be accomplished by blowing was given in 1845, at the Exhibition at Vienna, where a blown glass 7 feet in length and 3½ in breadth was exhibited; and which was of sufficient thickness to admit of polishing. Nevertheless, the casting of plate-glass is now managed with such comparative ease, that there appears to be no limit to the size to which the plates can be brought, so that the blowing of large panes of glass is given up in this country. Private houses may now be seen decorated with single sheets of glass upwards of 20 feet in height and 10 in width.

A patent for a very ingenious process for silvering glass was taken out in November 1843 by Mr. Drayton. It consists in depositing silver, from a solution, upon glass, by deoxidizing the oxide of silver in solution, so that the precipitate will adhere to the glass, without the latter having been coated with metallic or other substances. This is effected by mixing 1 oz. of coarsely powdered nitrate of silver with ½ oz. of spirits of hartshorn and 2 oz. of water; after standing for 24 hours, the mixture is filtered (the deposit on the filter, which contains silver, being preserved), and an addition is made thereto of 3 oz. of spirit (by preference, spirit of wine) at 60° above proof, or naphtha; from 20 to 30 drops of oil of cassia are then added, and after remaining for about 6 hours longer, the solution is ready for use. The glass to be silvered must have a clean and polished surface; it is to be placed in a horizontal position, and a wall of putty formed around it, so that the solution may cover the surface of the glass to the depth of from ⅛th to ¼th of an inch. After the solution has been poured on the glass, from 6 to 12 drops of a mixture of oil of cloves and spirit of wine (in the proportion of 1 part by measure of the oil to 3 of spirit of wine) are dropped into it at different places; or the diluted oil of cloves may be mixed with the solution before it is poured upon the glass; the more oil of cloves used, the more rapid will be the deposition of the silver, but the patentee prefers that it should occupy about two hours. When the required deposit has been obtained, the solution is poured off; and as soon as the silver on the glass is perfectly dry, it is varnished with a composition, formed by melting together equal quantities of bees’ wax and tallow. The patentee states that, by experiment, he has ascertained that about 18 grs. of nitrate of silver are used for each square foot of glass.

На страницу:
7 из 55