Полная версия
Краткая история насекомых. Шестиногие хозяева планеты
В 2019–2020 гг. в крупнейших американских изданиях разного профиля, от Science и New Scientist до The Atlantic и The New York Times, как по команде появились большие расследования, посвященные «кровавому янтарю» и страданиям добывающего его местного населения. Действительно, условиям, в которых работают качинские шахтеры, не позавидуешь. Балтийский янтарь, например, разрабатывают карьерным способом или просто выуживают из морских волн. Если на калининградском побережье вы увидите скопление людей с сачками, то знайте, что они ловят не рыбу, а куски янтаря, вынесенные со дна моря после сильного шторма. Однако поиск бирманского янтаря, залежи которого располагаются на глубине 10–15 м, не имеет ничего общего с этим приятным времяпрепровождением на свежем воздухе. Чтобы добраться до бирмита, качинам приходится вручную рыть узкие вертикальные шахты, больше похожие на норы грызунов. Бамбуковые подпорки, которыми укреплены шахтные стенки, не спасают от периодических обвалов. Разумеется, в случае таких инцидентов никакой материальной помощи шахтерам и их семьям не предусмотрено, рассчитывать приходится только на себя. Тем не менее многие идут на этот риск, ведь добыча янтаря в Качине чуть ли не единственный способ прилично заработать.
Впрочем, если верить свидетельствам европейцев, навещавших долину Хукон еще во времена британского колониализма, 100 лет назад технология добычи бирмита была точно такой же. И если бы шахты продолжали оставаться в руках повстанцев, вряд ли нелегкая участь искателей янтаря могла бы кого-то взволновать. Однако, когда деньги от продажи янтаря потекли в карманы правящего режима, у западной общественности внезапно открылись глаза на творящиеся в Качине безобразия. И вот в 2020 г. после волны публикаций в СМИ правление Общества палеонтологии позвоночных разослало в редакции более 300 научных журналов открытое письмо, потребовав прекратить публикацию статей с описанием находок из бирманского янтаря, купленного после июня 2017 г., когда хунта наложила свою железную длань на его добычу. Этот призыв не остался гласом вопиющего в пустыне, что неудивительно, ведь Общество палеонтологии позвоночных, в рядах которого состоит более 2000 препараторов и ученых со всего мира, является одним из крупнейших профильных объединений палеонтологов. Некоторые уважаемые палеонтологические журналы поспешили объявить о полном отказе от публикации любых работ, основанных на материале из бирманского янтаря, даже если он происходит из старых коллекций.
Если даже не вдаваться в философские дискуссии о том, что важнее – поиск научной истины или права человека, то с чисто практической стороны такие попытки ограничить свободу науки во имя гуманистических соображений вызывают немало вопросов. Сложно представить, что к бойкоту бирмита присоединятся научные журналы всего мира, поэтому лазейка для того, чтобы опубликовать очередную янтарную сенсацию, всегда найдется. Но и в том случае, если закупки инклюзов в научных целях полностью прекратятся, их не перестанут покупать для частных собраний, где они на долгие годы, если не навсегда, будут потеряны для науки. К тому же основной спрос на бирмит создают не ученые с коллекционерами, а покупатели ювелирных украшений, которым нет никакого дела до древних организмов. Да, цена на крупные и красивые инклюзы действительно зашкаливает: самые дорогие насекомые из бирмита, выставленные на онлайн-аукционе eBay, стоят 5000–7000 долларов (о таких редкостях, как птицы или ящерицы, я вообще молчу). А вот мелкие и невзрачные янтарные насекомые продаются за считаные доллары, хотя некоторые из них представляют не меньшую научную ценность. Но, с точки зрения ювелира, кусок янтаря с комариком и жучком внутри – это брак, из него не выточить безукоризненное изделие. Поэтому постоянный спрос на такую «некондицию» со стороны ученых является дополнительной гарантией, что она не окажется в мусорном ведре.
Хотя сенсационные находки позвоночных в бирмите вроде вышеупомянутого хвоста динозавра всегда вызывают повышенный интерес, основную массу научных открытий, связанных с этим янтарем, выдают палеоэнтомологи. И вот их-то интересы Общество палеонтологии позвоночных, похоже, проигнорировало полностью. Поэтому Международное палеоэнтомологическое общество, в свою очередь, выпустило обращение с резкой критикой его действий. Похоже, гражданская война, которая идет в Мьянме, теперь может перекинуться и на сообщество палеонтологов, причем явных победителей в ней тоже не будет. В проигрыше останутся все. Часто можно услышать, что в прошлом главным препятствием на пути развития науки была религия. Но движение за запрет научного изучения бирмита – это иллюстрация того, что в наши дни одним из главных врагов науки становится воинствующий гуманизм.
Реалии современного мира развеивают миф об автономии и ценностной нейтральности науки похлеще любых философов-постмодернистов. Никого уже не удивляет, что нобелевского лауреата Джеймса Уотсона подвергают тотальной обструкции за высказывания о возможной связи между уровнем интеллекта и расовым происхождением, хотя еще полвека назад этот вопрос обсуждался совершенно свободно. Любые опыты над животными на Западе уже давно проходят под строгим надзором этических комиссий – существуй они во времена академика Павлова, не открыть ему условных рефлексов. Когда российский генетик Денис Ребриков анонсировал проект по редактированию генома человеческих эмбрионов по методу CRISPR/Cas9, «этически сознательные» коллеги набросились на него даже более остервенело, чем религиозные деятели. Посреди бушующих волн морального пафоса, захлестывающих сегодня науку, палеонтология всегда казалась островком спокойствия. В самом деле, какие претензии можно выдвинуть к изучению организмов, исчезнувших многие миллионы лет назад? Но не тут-то было – даже ископаемые насекомые могут стать мишенью (само)цензуры…
Глава 2
Великий поход на сушу
В один весенний день 1910 г. шотландский сельский врач и геолог-любитель Уильям Макки возвращался с очередной вылазки за интересными минералами. Излазав несколько холмов вдоль и поперек, Макки порядком устал и медленно шел по дороге. За поворотом показалась деревушка Райни. Мелкий моросящий дождь – непременный атрибут шотландской погоды – на время прекратился, и из-за туч выглянуло солнце. «Самое время сделать привал», – сказал себе Макки и присел на каменную ограду придорожного поля. Но только он развернул сэндвичи, как заметил в ограде странный камень, совершенно непохожий на горные породы, виденные им в этой местности до сих пор. Согласно одной из легенд, именно так было открыто знаменитое местонахождение Райни, благодаря которому палеонтологам удалось в деталях воссоздать облик одной из древнейших наземных экосистем в истории нашей планеты.
В течение следующих двух лет Макки посетил поле еще несколько раз и, распугивая пасущихся на нем овец, собрал целую груду обломков той же загадочной породы, что и первый камень. Впоследствии ее стали называть райниевыми че́ртами (от англ. chert – кремнистый сланец). Чтобы разобраться, что же представляет собой эта порода, Макки стал распиливать ее на шлифы – так геологи называют тонкие каменные пластинки, которые наклеивают на стеклышко и изучают под микроскопом. На некоторых таких шлифах Макки с удивлением увидел прекрасно сохранившиеся стебли каких-то растений и в 1913 г. опубликовал их фотографии. Научная общественность была заинтригована. Чтобы найти то место, где райниевые черты выходят на поверхность, ученым с разрешения владельца поля пришлось вырыть на нем траншеи. Благодаря этому удалось не только собрать новые образцы породы, но и установить ее возраст и особенности залегания. Оказалось, что райниевые черты сформировались в самом начале девонского периода, примерно 407–410 млн лет назад.
Послойно шлифовать твердые, как кремень, райниевые черты – очень кропотливая работа, но она приносит плоды. Особенно много открытий совершили здесь палеоботаники – за прошедшие десятилетия им удалось детально реконструировать внутреннее строение раннедевонских растений, которыми забита эта порода. На препаратах можно разглядеть буквально каждую клеточку внутри стебля. Их исключительная сохранность связана с тем, что растения эти росли вдоль горячих источников, богатых кремнеземом. Подобными источниками в наши дни славится, например, Йеллоустонский национальный парк в Северной Америке, раскинувшийся над супервулканом. Время от времени растительность, покрывавшая Райни в девоне, подтоплялась горячими кремнистыми водами, что приводило к быстрой минерализации органического вещества и не давало ему разлагаться. Таким же образом в Райни сохранились не только растения, но и многие членистоногие, жившие в их зарослях: многоножки, сенокосцы, клещи и среди них риниеллы (Rhyniella praecursor) – древнейшие насекомые, дошедшие до нас в ископаемом состоянии.
Риниеллы относятся к ногохвосткам (Collembola) – крошечным существам, которые живут во влажной почве и на ее поверхности. Современных ногохвосток иногда можно встретить даже в цветочных горшках. В отличие от подавляющего большинства насекомых, у них нет и никогда не было крыльев, а челюсти спрятаны в особом кармане внутри головы. Питаясь гниющими растительными остатками, ногохвостки играют в процессе почвообразования не менее важную роль, чем дождевые черви: на один кубометр грунта, как правило, приходится несколько тысяч особей. И иногда эта тайная армия переходит в наступление. В феврале 2016 г. по всем федеральным СМИ прошла новость о нашествии «снежных блох» на Тульскую область. В репортажах показывали, как по обочинам дорог текли шевелящиеся темные реки из крошечных насекомых. Перепуганные сельчане обливали этих «блох» бензином и поджигали. На самом деле это были вовсе не блохи, а совершенно неопасные для человека ногохвостки Desoria saltans, разбуженные оттепелью. Блохами их прозвали за способность к прыжкам: у ногохвосток на конце брюшка есть прыгательная вилка, которая в покое подводится под тело и удерживается особой зацепкой. Как только ногохвостка ослабляет зажим, освободившаяся вилка резко бьет о землю и подбрасывает ее высоко вверх.
* Folsom J. W. Nearctic Collembola, or springtails, of the family Isotomidae // Bulletin of the United States National Museum. 1937. Vol. I–III. P. 1–144.
В 1981 г. в шлифах из Райни палеонтологи нашли брюшко 1,5-миллиметровой ногохвостки с подобной прыгательной вилкой[8]. Еще раньше там были найдены четыре головы и грудь с ногами, также принадлежавшие риниеллам. По своим признакам риниеллы так мало отличаются от ныне живущих ногохвосток, что некоторые ученые даже помещают их в состав современного семейства Isotomidae (рис. 2.1). К этому же семейству относятся и ногохвостки, «напавшие» на жителей Тульской области. Жаль, что туляки без должного пиетета отнеслись к этим крошкам с историей в 400 млн лет… Встретить их – все равно что увидеть на улице диплодока или бронтозавра, с той лишь поправкой, что ногохвостки почти в два раза древнее самых древних динозавров и к тому же нисколько не изменились за все это время!
* * *Если спросить моего сына-дошкольника, как отличить насекомое от паука, то он сразу скажет: у одного шесть ног, а у другого восемь. Это утверждение выглядит наивно и по-детсадовски, но оно указывает на фундаментальное разделение между насекомыми и всей остальной их родней: ракообразными, многоножками и паукообразными. У всех этих существ, объединяемых в тип Членистоногие (Arthropoda), к сегментированному телу крепятся членистые конечности, каждая из которых содержит несколько шарниров. Но за вычетом насекомых членистоногие не знают меры в умножении числа ног. У современных двупарноногих многоножек – самых «ногастых» существ на планете – число ходильных ног может достигать 1306, у вымерших трилобитов – 206. Мокрицы ходят на 14 ногах. Мечехвосты, а также креветки ползают по морскому дну с помощью 10 ног (прибавьте сюда еще множество маленьких жаберных ножек на брюшке). Крабы, подобно паукам, бегают на восьми ногах (передняя пара ходильных ног у них превратилась в клешни). Насекомые же пошли по пути минимализма, обходясь для передвижения всего шестью ногами, прикрепленными попарно к трем сегментам груди. От конечностей на брюшке они полностью отказались, если не считать некоторых сильно видоизмененных придатков. Поэтому насекомых в широком смысле слова – от ногохвосток до мух и жуков включительно – выделяют в особую группу Hexapoda, что переводится с греческого как «шестиногие».
Зачем же насекомым понадобилось отказываться от дополнительных конечностей? Чем меньше ног, тем меньше площадь контакта с поверхностью и, соответственно, тем слабее трение и выше скорость передвижения. Умение же быстро бегать – важнейший навык в мире, который кишит хищниками. Когда надо бежать совсем быстро, то даже шесть ног – это слишком много. Записи сверхскоростных видеокамер показали, что бегущий американский таракан, чтобы ускориться, сначала переходит на четырехногий бег, поднимая переднюю пару ног, а когда нужно рвануть изо всех сил, он несется уже только на двух задних ногах, как заправский спринтер[9].
Сразу можно спросить: а что мешало тогда насекомым сократить число ходильных ног до четырех? Почему они остановились именно на шести? Ведь игуаны, лошади, гепарды обходятся четырьмя ногами, а страусы и люди – и вовсе двумя. Это далеко не праздный вопрос. В последние годы инженеры работают над созданием миниатюрных роботов, которых можно будет использовать для поиска людей под завалами или даже для колонизации других планет. Предполагается, что прототипом таких устройств выступят насекомые. Но чтобы это стало возможным, необходимо разобраться в особенностях их шестиногого передвижения.
Одно соображение лежит на поверхности: благодаря наличию шести конечностей у насекомых появляется возможность в каждый момент ходьбы использовать три точки опоры. Движущееся насекомое опирается на субстрат тремя ногами: передней и задней с одной стороны тела и средней – с другой. Потом оно опускает на землю другие три конечности и делает шаг вперед. Известно, что три точки опоры – это необходимый минимум для устойчивости: на табуретке с тремя ножками усидеть легко, но если одну из них убрать, то сделать это сможет разве что акробат. Если бы у насекомых было всего по четыре ноги, то при каждом шаге они превращались бы в такие неустойчивые двуногие табуретки.
Позвольте, скажете вы, но ведь именно так и передвигаются четвероногие животные. Лошадь, бегущая рысью, попеременно опирается на две ноги: сначала на левую переднюю и правую заднюю, потом на правую переднюю и левую заднюю. Почему же какой-нибудь маленький легкий жучок больше заботится о своей устойчивости, чем большая тяжелая лошадь? Проблема в том, что из-за разницы в размерах один и тот же окружающий мир для насекомых и для позвоночных выглядит совершенно по-разному. Для лошади луг, по которому она бежит, – это практически ровная поверхность. Для жука тот же луг – экстремально пересеченный ландшафт. Представьте себе руфера, который всю жизнь карабкается по небоскребам Манхэттена. Точно так же чувствуют себя насекомые, когда на их пути встают «небоскребы» из травы, камней или деревяшек. В этой ситуации наличие шести ног становится обязательным.
Ходьба[10] с попеременной опорой на три ноги необходима насекомым, чтобы взбираться по отвесным поверхностям, таким как стебли и листья, и при этом не соскальзывать вниз. Здесь вступает в дело адгезия – межмолекулярное взаимодействие, возникающее между лапками насекомого и субстратом за счет тонкой прослойки жидкости. Если положить один влажный кусочек стекла на другой, то разлепить их будет очень непросто. Этот же эффект используют и насекомые. На лапках у них есть подушечки, из которых при каждом шаге выделяются крошечные капельки жира, обеспечивающие приклеивание к опорной поверхности. Но слишком сильно приклеивать ногу нельзя, иначе при следующем шаге не оторвешь ее от субстрата. Из-за этого адгезивная сила каждой отдельно взятой конечности ограниченна. Поэтому если бы при каждом шаге вес тела насекомого перекладывался на две ноги вместо трех, то возникающей адгезии было бы недостаточно, чтобы удержать его от падения. Четвероногость подходит только тем насекомым, которым не нужно никуда забираться.
Например, бессяжковые (Protura) – примитивные первичнобескрылые насекомые, которые всю жизнь проводят в почве, где просто некуда залезать и неоткуда падать, – ходят на четырех конечностях вместо шести: передняя пара ног у них вытянута вперед и используется вместо антенн. У самцов некоторых видов фиговых ос (Agaonidae) средняя пара ног уменьшилась до крошечного рудимента. Этим бескрылым созданиям, которые живут и умирают в плодах инжира, где и развернуться-то негде, тоже нет никакого смысла быть шестиногими (рис. 2.2). А вот самки тех же видов выбираются во внешнюю среду и потому сохранили все три пары ног. Сложно представить в природе что-то более плоское, чем зеркальная гладь пруда. Бегающие по ней водомерки тоже фактически четырехноги: передняя пара конечностей у них короткая и служит лишь для захвата добычи. А вот богомолы, в отличие от водомерок, продолжают использовать свои хватательные ноги для передвижения, ведь им приходится лазать среди травы и ветвей – тут без шести ног не обойтись.
Остается только гадать, где, когда и как предки насекомых сделались шестиногими. В палеонтологической летописи насекомые появляются в полностью готовом виде: ногохвостки из Райни как две капли воды похожи на своих современных родичей. Палеонтологам так и не удалось найти какие-либо промежуточные формы, связывающие насекомых с другими группами членистоногих. Исключение – таинственные вингерчелликусы (Wingertshellicus backesi) из раннего девона Германии, жившие около 405 млн лет назад, примерно тогда же, когда и риниеллы. Грудные сегменты этих довольно крупных (длиной до 7 см) членистоногих несли три пары ходильных конечностей. Однако за грудью у них тянулось длинное-предлинное брюшко, состоявшее из 35–45 сегментов с коротенькими ножками по бокам (рис. 2.3). Ничего подобного нет даже у самых примитивных насекомых, чье брюшко включает не более 10–11 сегментов. Хотя вингерчелликусов нельзя причислить к настоящим насекомым, некоторые считают, что они были близки к их предкам. Однако более вероятно, что вингерчелликусы представляли собой независимую тупиковую ветвь членистоногих. Интересно, что находки вингерчелликусов происходят из морских отложений, т. е. с шестиногостью членистоногие начали экспериментировать еще в воде.
* Haas F. et al. Devonohexapodus bocksbergensis, a new marine hexapod from the Lower Devonian Hunsrück Slates, and the origin of Atelocerata and Hexapoda // Organisms Diversity & Evolution. 2003. Vol. 3. P. 39–54.
* * *Из-за отсутствия палеонтологических данных предположения о предках насекомых приходится строить лишь на основе генетики и сравнительной анатомии. Долгое время в качестве ближайшего родича насекомых ученые рассматривали многоножек. Однако многочисленные молекулярные исследования, проведенные за последние 20 лет, показали, что генетически к шестиногим гораздо ближе ракообразные. Помимо сходства на генетическом уровне, у насекомых и ракообразных нашли ряд общих черт в строении нервной системы. Поэтому сейчас многие ученые помещают насекомых вместе со всевозможными раками и рачками в единую группу Pancrustacea – «панракообразные» (от греч. pan – «всецелый, всеобъемлющий»). Получается, насекомые – это просто-напросто сильно видоизмененные наземные ракообразные, «летающие креветки», как образно выражается отечественный палеоэнтомолог Дмитрий Щербаков.
Но как же раки превратились в насекомых? Чтобы ответить на этот вопрос, совершим небольшой экскурс в историю строительной индустрии. В 1837 г. лондонский плотник Генри Мэннинг сделал для своего сына, отправляющегося в Австралию, разборный дом, который тот мог бы взять с собой на корабль и затем быстро возвести по прибытии на место. Мэннинг считается пионером модульного строительства – так называют технологию сборки домов из готовых секций. Интерес к модульному строительству подстегнула золотая лихорадка, разразившаяся в 1848–1855 гг. в Калифорнии. Тысячи старателей, прибывших в этот штат, нуждались в крыше над головой, и типовые быстровозводимые дома подходили им как нельзя лучше. С тех пор модульные здания пользуются заслуженной популярностью у строителей, полярников и всех, кому необходимо в кратчайшие сроки освоиться на необжитом месте. Достаточно поставить несколько готовых блоков рядом или друг на друга и по своему усмотрению оборудовать их под столовую, спальню или мастерскую.
Эволюция членистоногих происходила по такому же модульному принципу. Как уже говорилось, тело любого членистоногого состоит из отдельных сегментов, несущих по две членистые конечности. Каждый такой сегмент – это блок-секция, которую можно приспособить для выполнения различных задач, превратив конечности в чувствительные антенны, челюсти, половые придатки, жабры, легочные мешки и далее по списку. А если сегмент нужен лишь как вместилище внутренних органов, то нет ничего проще, чем убрать с него ноги вовсе. Как и секции в модульном здании, различные сегменты в теле членистоногого можно комбинировать как угодно, наращивая или сокращая их число в соответствии с конкретными потребностями и условиями среды. Например, усоногие раки полностью отказались от брюшных сегментов: в крошечных известковых домиках на камнях, в которых они живут, брюшко им только мешало бы. Многоножки, напротив, увеличили число сегментов с ходильными ногами до нескольких десятков и даже сотен. Это придало их телу гибкость, необходимую для проникновения в узкие щели и зазоры между частицами грунта.
Судьба того или иного сегмента зависит от Hох-генов. Они управляют эмбриональным развитием членистоногих и других животных, в том числе человека. Если какой-нибудь Hох-ген включится или выключится не в том месте, где нужно, то устройство сегмента не будет соответствовать его предназначению. Например, мутация в Hox-гене Antp приводит к тому, что у мушки дрозофилы на голове вместо антенн вырастают ноги, а мутация в Hox-гене Ubx – к появлению четырехкрылых мух, у которых на заднегруди вместо жужжалец (редуцированных крыльев, похожих на пластинки) образуются полноценные крылья. Всего у насекомых восемь Hox-генов, и все они очень древние – их наличие подтверждено даже у онихофор (бархатных червей), которые являются ближайшими родичами всех членистоногих[11]. Таким образом, к началу кембрия, когда жил последний общий предок онихофор и членистоногих, полный набор Hox-генов, которым пользуются современные насекомые, уже сформировался. В ходе дальнейшей эволюции членистоногих менялись не столько сами Hox-гены (хотя и это тоже происходило), сколько место и характер их работы в теле зародыша (рис. 2.4).
* Averof M., Akam M. Hox genes and the diversification of insect and crustacean body plans // Nature. 1995. Vol. 376. P. 420–423.
Как же считаное число Hox-генов может управлять развитием сложнейшего организма? Примерно так же, как несколько министров управляют жизнью целой страны. Каждому министру подчиняется с десяток директоров департаментов, а у них, в свою очередь, тоже есть уйма подчиненных. Подобным образом регуляторный белок, который синтезируется при активации Hox-гена, проникая в клеточное ядро, включает сотни генов-регуляторов первого порядка, а их продукты запускают работу генов второго порядка. Возникает многоступенчатый каскад взаимодействий[12]. Достаточно внести изменения на одном из уровней, например скорректировать восприимчивость нескольких генов к Hox-белку, чтобы конечный результат получился совсем иным. В итоге число возможных сочетаний ног, сегментов и отделов тела у членистоногих зашкаливает. Чтобы как-то разобраться с этим чудовищным многообразием, отечественный зоолог Виктор Павлов создал даже периодическую систему членистоногих, но, надо сказать, она получилась совсем не такой стройной, как периодическая система Менделеева[13]. Это неудивительно, ведь, например, у особей некоторых видов многоножек количество ног и сегментов может различаться в два раза![14] На фоне этой вариабельности возникновение «раков с шестью ногами» – то бишь насекомых – не кажется чем-то из ряда вон выходящим. Может быть, когда мы будем знать больше о работе Hox-генов, мы сможем повторить этот процесс в пробирке, перепрограммировав эмбрион какого-нибудь ракообразного в примитивное шестиногое.