
Полная версия
Charles Lyell and Modern Geology
The Lyells left Liverpool on July 20th, 1841, and reached Halifax on the 31st of the month, whence they went on to Boston, arriving there on August 2nd. The close resemblance of the shells scattered on the shore at the latter place to those in a similar situation in Britain was one of the first things which Lyell noted; for he found that about one-third were actually identical, a large number of the remainder being geographical representatives, and only a few affording characteristic or peculiar forms. For this correspondence, which, as he writes, had a geological significance, he was not prepared. The drifts around Boston, good sections of which had been exposed in making cuttings for railways, resembled very closely the deposits which he had seen in Scandinavia. Were it not, he says, for the distinctness of the plants and of the birds, he could have believed himself in Scotland, or in some part of Northern Europe. These masses of sand and pebbles, derived generally from the more immediate neighbourhood, though containing sometimes huge blocks which had travelled from great distances, occasionally exceeded 200 feet in depth. Commonly, however, they were only of a moderate thickness, and were found to rest upon polished and striated surfaces of granite, gneiss, and mica-schist. The latter effects, at any rate, would now be generally attributed to the action of land ice, but Lyell thought that the great extent of low country, remote from any high mountains, made this agent practically impossible, and supposed that the work both of transport and of attrition had been done during a period of submergence by floating ice and grounding bergs.
After a few days' halt at Boston, they moved on to Newhaven, where Professor Silliman showed him dykes and intrusive sheets of columnar greenstone altering red sandstone, their general appearance and association recalling Salisbury Crags and other familiar sections near Edinburgh. In this district Lyell found the grasshoppers as numerous and as noisy as in Italy, watched the fireflies sparkling in the darkness, and had his first sight of a humming-bird, and of a wildflower hardly less gorgeous, the scarlet lobelia.
From Newhaven they went to New York, and up the Hudson River in one of the great steamers, past the noble colonnade of basalt called the Palisades, and along the winding channel through the gneissic hills to Albany. Here a geological survey had been established by the State, and its members had already done good work, which, however, was not altogether welcome to its employers, for they had dispelled all hopes of finding coal within the limits of the State. This, as Lyell says, was a great disappointment to many; but it did good in checking the rashness of private speculation, and in preventing the waste of the large sums of money which had been annually squandered in trials to find coal in strata which really lay below the Carboniferous system. The advantage to the revenues of the state by the stoppage of this outlay and the more profitable direction given to private enterprise were sufficient, Lyell remarks, "to indemnify the country, on mere utilitarian grounds, for the sum of more than two hundred thousand dollars so munificently expended on geological investigation."
From Albany Lyell travelled to Niagara. The journey was planned in order to give him an opportunity of examining a connected series of formations from the base of the Palæozoic, where it rested on the ancient gneiss, to the coalfield of Pennsylvania; and he had the great advantage of being accompanied by one of the most eminent of American geologists, Mr. James Hall.
"In the course of this third tour," Lyell writes,95 "I became convinced that we must turn to the New World if we want to see in perfection the oldest monuments of the earth's history, so far as relates to its earliest inhabitants. Certainly in no other country are these ancient strata developed on a grander scale, or more plentifully charged with fossils; and as they are nearly horizontal, the order of their relative position is always clear and unequivocal. They exhibit, moreover, in their range from the Hudson River to the Niagara some fine examples of the gradual manner in which certain sets of strata thin out when followed for hundreds of miles; while others, previously wanting, become intercalated in the series."
He observed, also, that while some species of the fossils contained in these rocks were common to both sides of the Atlantic, the majority were different; thus disproving the statement which at that time was often made – namely, that in the rocks older than the Carboniferous system the fossil fauna in different parts of the globe was almost everywhere the same, and showing that, "however close the present analogy of forms may be, there is evidence of the same law of variation in space as now prevails in the living creation."
Lyell made a thorough study of the Falls of Niagara, to which he paid a second visit before his return to England. The first view of these Falls, like the first sight of a great snow-clad peak, is one of those epochs of life of which the memory can never fade. It stirred Lyell to an unwonted enthusiasm. At the first view, from a distance of about three miles, with not a house in sight – it would be impossible, we think, to find such a spot now; "nothing but the greenwood, the falling water, and the white foam" – he thought the falls "more beautiful but less grand" than he had expected; but, after spending some days in the neighbourhood, now watching the river sweeping onwards to its final plunge, here in the turmoil of the rapids, there in its gliding, so smooth but so irresistible; now gazing at that mighty wall of 'shattered chrysoprase' and rainbow-tinted spray, which floats up like the steam of Etna; now looking down from the brink of the crags below the fall upon those rapids, where the billows of green water roll and plunge like the waves of the ocean, he "at last learned by degrees to comprehend the wonders of the scene, and to feel its full magnificence."
But, keenly as he might be impressed with the poetic grandeur of the falls, he could not forget the scientific questions which were ever present to his mind. The gorge of Niagara offered a problem for solution which had for him a special fascination. Not only did it illustrate on a grand scale the potencies of water in rapid motion, but also it furnished data for estimating the period during which this agent had been at work. The gorge has been carved in a plateau of Silurian rock, which terminates, seven miles below the falls, in a precipitous escarpment overhanging Queenstown. There was a time when that gorge did not exist, when the river first took its course along the plateau on its way from Lake Erie, and plunged over the brink of the escarpment. The valley at first was nothing more than a shallow trench excavated in the drift which covers the surface of the country – such an one as may still be seen between Lake Erie and the falls – but the river, slowly and steadily, has cut its way back through the rocky plateau from the first site of the falls near Queenstown to their present position. The upper part of this plateau consists of a thick bed of hard limestone, but beneath this the deposits become softer; and the lowest bed is the most perishable. The water, as it plunges down, undermines the overlying rock. The gorge began at once to be developed, and it has ever since continued to retreat towards Lake Erie. Every year makes some slight change. This becomes more marked when old histories are consulted and old drawings compared with the present aspect of the scene. Father Hennepin's sketch, of which Lyell gives a copy,96 rude and incorrect as it is, proves beyond all question that the changes in the neighbourhood of Table Rock have been very considerable, for it shows that on this side a third and much narrower cascade fell athwart the general course of the main mass of water. This cascade, by the time of Kalm's97 visit in 1751, had ceased to be conspicuous, and had quite disappeared before the date of Lyell's visit. The Horseshoe Fall also at the present time is less worthy of the name than it was at that date, for its symmetry has been seriously marred by a deep notch which the northern stream has cut in the more central part of the curve.98 Careful inquiry convinced Lyell that the slow recession of the falls was an indubitable fact, and that its rate, on an average, was about a foot a year. As the gorge is about seven miles long, this would fix its beginning about 35,000 years ago.99
From Niagara Falls they travelled, still in Mr. Hall's company, by Buffalo to Geneva, examining on the way some red, green, and bluish-grey marls, with beds of gypsum and occasional salt springs, which, though older than the coal measures of England, closely resembled in appearance the upper part of the New Red Sandstone of Britain. Finally, after crossing the outcrops of the Devonian system, they reached Pennsylvania, where Lyell obtained his first view of the coal measures of North America, and was no less interested than surprised to find how closely the whole series corresponded with that of Britain. He saw sandstones "such as are used for building in Newcastle or Edinburgh, dark shales often full of ferns 'spread out as in a herbarium,' beds and nodules of clay-ironstone, seams of bituminous coal, varying in thickness from a few inches to some yards, and, beside these, an underlying coarse grit, passing down into a conglomerate, which was very like the millstone grit of England. The underclays beneath the seam of coal were full of stems and rootlets of Stigmaria, and the sight of these confirmed him in the opinion that the coal was formed of the remains of plants which had grown upon the spot."100 After examining the district, they returned to Albany, and went thence to New York and Philadelphia, picking up on the way as much geological information as was possible.
New Jersey afforded some highly interesting sections of rocks belonging to the Cretaceous system, for these, though in mineral character resembling the greensands on the eastern side of the Atlantic, contained fossils which corresponded more closely with those of the white chalk, some species being actually identical. This fact was another proof that, though there had been in past ages a general similarity in the fauna of any period, geographical provinces had existed no less than they do at the present time.
Lyell had examined, as mentioned above, the bituminous coals in the undisturbed region of Pennsylvania, the next step was to study the beds of anthracite, with the associated strata, in the folded and broken ridges of the Alleghany Mountains. In this part of his work he had the inestimable advantage of being guided by Professor H. O. Rogers, whose name is inseparably connected with the geology of that classic region. The Alleghanies or Appalachians consist of a series of Silurian, Devonian, and Carboniferous strata in orderly sequence, "folded" (to use Lyell's words) "as if they had been subjected to a great lateral pressure when in a soft and yielding state, large portions having afterwards been removed by denudation. The long uniform, parallel ridges, with intervening valleys like so many gigantic wrinkles and furrows, are in close connection with the geological structure," and the rocks are most disturbed on the south-eastern flank of the chain, where the folds sometimes bend over to the west; in other words, the greatest disturbances are on the side nearest to the fundamental gneiss and the basin of the Atlantic – facts which probably stand in the relation of effect and cause.
It was a surprise to Lyell, on reaching the anthracite district around Pottsville on the Schuylkill, to see "a flourishing manufacturing town with the tall chimneys of a hundred furnaces, burning night and day, yet quite free from smoke." Special contrivances, of course, are requisite to secure the combustion of anthracite, especially in household fireplaces, but he had no hesitation in declaring that he preferred the use of it, notwithstanding the stove-like heat produced, to that of the bituminous coal consumed in London, with the penalty of living in an atmosphere dark with smoke and foul with smuts.
The seams of anthracite in this district are sometimes worked in open-air excavations, but as the strata have been bent into a vertical position the beds above and below, when the anthracite has been quarried out, are left like the walls of a fissure, and thus can be examined with the greatest ease.
Here also the "roof" of the seam proved to be a dark shale full of the usual plant-remains, among which were some British species of ferns, and the "floor" was an "underclay" containing the stems and rootlets of Stigmaria. Lyell also observed that the beds of detrital materials – sandstones, shales, etc. – were less persistent than those of coal, and that the way in which the former became thicker towards the south-east indicated that this was the direction of the ancient land region from which they had been derived. The result of his examination satisfied him that the anthracite of the Appalachians was identical in age, generally speaking, with the bituminous coal which he had previously examined, and was merely a fragment of the great continuous coalfield of Pennsylvania, Virginia, and Ohio, which lies about forty miles away to the westward.
After returning to Philadelphia Mr. and Mrs. Lyell went, viâ New York, to Boston, where he had been engaged to deliver a course of twelve lectures on geology at the Lowell Institute. To the courses here admission was free, but the tickets were given under certain restrictions. For Lyell's lectures about 4,500 were issued, and the class, he states, usually consisted of more than 3,000 persons. It had therefore to be sub-divided and each lecture to be repeated. The audience was composed "of persons of both sexes, of every station in society, from the most affluent and eminent in the various learned professions to the humblest mechanics, all well-dressed, and observing the utmost decorum."
At the conclusion of the lectures the Lyells travelled southwards, so that he might take advantage of the more genial climate and continue his geological work in the open air. He first halted at Richmond in Virginia, and from that place visited the Tertiary deposits in the vicinity of the James River. The more interesting of these are of Miocene age, and he observed that the fossils of Maryland and Virginia resembled those of Touraine and the neighbourhood of Bordeaux more closely than those from the coralline Crag of Suffolk, especially in the presence of genera indicative of a warm climate.
From this place they travelled across the "pine barrens" – where their train was stopped for the night by the slippery condition of the rails – to Weldon in North Carolina. Here Lyell saw the Great Dismal Swamp, a morass which extends for about forty miles from the neighbourhood of this town to Norfolk in Virginia. Like the bogs of Ireland, this marshy plain, some five-and-twenty miles across, is rather higher at the middle than at the edges. Its surface "is carpeted with mosses, and densely covered with ferns and reeds, above which many evergreen shrubs and trees flourish, especially the white cedar (Cupressus thyoides), which stands firmly supported by its long tap-roots in the softest parts of the quagmire. Over the whole, the deciduous cypress (Taxodium distichum) is seen to tower with its spreading top, in full leaf, in the season when the sun's rays are hottest, and when, if not interrupted by a screen of foliage, they might soon cause the fallen leaves and dead plants of the preceding autumn to decompose, instead of adding their contributions to the peaty mass. On the surface of the whole morass lie innumerable trunks of large and tall trees, blown down by the winds, while thousands of others are buried at various depths in the black mire below. They remind the geologist of the prostrate position of large stems of Sigillaria and Lepidodendron, converted into coal in ancient Carboniferous rocks."101
At Charleston they had practically passed beyond the southern limit of the winter snowfall, the greatest enemy of the field-geologist, and could carry on work without fear of interruption. Here they found flowers "at the end of December still lingering in the gardens," and were in the region of the palmetto palm. Few things during this rather lengthy journey impressed Lyell more than the facility of locomotion in a district which, comparatively speaking, was a new settlement, and was still in places thinly peopled, together with the general good quality of the accommodation for travellers. In this respect they had fared much worse during the previous year, when they were travelling through some of the more populous parts of France, such as Touraine and Brittany. After a journey through the pinewoods, they reached Augusta in Georgia, where another group of Tertiary deposits invited a halt. Those belonging to the Eocene period lie further down the Savannah River, so that a journey was made for the purpose of examining them, in the course of which, near the town of the same name as the river, Lyell also saw the clay in which remains of the mastodon and of other extinct mammals had been found. The muddy beach, with the tracks of racoons and opossums, gave him some hints as to the history of fossil footprints, so that on the whole very much interesting geology was the reward of a three weeks' stay in South Carolina. Then they once more turned their faces northward, and made their way, working at geology as they went, to Philadelphia, where they found themselves again in the region of colder winters at the present, and of erratic boulders as memorials of the past.
Six weeks were spent in Philadelphia, but Lyell's time was largely taken up by the delivery of a short course of lectures on geology. Pennsylvania, however, added to his experiences in another way, for the state had passed through a commercial crisis, and was unable to pay the interest on its funded debt. The soreness produced by this repudiation will not be readily forgotten, for nearly two-thirds of the stock – the whole amount of which was eight millions sterling – was held by British owners, so that the loss was felt heavily on this side of the Atlantic. In his "Travels" Lyell gives a brief history of this transaction, and discusses the political causes of a crisis which had been hardly less disastrous in America than in England.
They reached New York in the month of March, and spent several weeks there, for in that neighbourhood both the ancient crystalline rocks and the modern drift, with its erratics, afforded Lyell ample materials for study, each of these being then reckoned (and they have not ceased to be so counted) among the most difficult questions of geology. Towards the middle of April he proceeded northward, in order to examine the perplexing schists and less altered sedimentary deposits of the Taconic range, rocks which from that time to this have given ample employment to geologists. After this he found an opportunity of making use of the lessons learnt on the flats by the James River, for he went to Springfield and examined the famous footprints in the sandstone of Connecticut. As the deposit was referred to the Trias, and the footprints to birds, they were supposed to indicate the existence of this class of the animal kingdom at the beginning of the Secondary era. They have, however, now lost their special interest, since they are generally assigned to reptiles. After the middle of April was past, the travellers again reached Boston, from which city an excursion was made in order to study the Tertiary deposits of the island called Martha's Vineyard, off the coast of Massachusetts.
Returning to Philadelphia early in May, they went by Baltimore westward to the valley of the Ohio, in order to examine the undisturbed country beyond the folded district of the Alleghany Mountains. By this journey another section was, in fact, run across the great coalfield of the Eastern States, but considerably to the south of that which had been examined in the autumn of the preceding year. This proved no less interesting than the former one. At Brownsville, to take one instance only, a seam of bituminous coal, ten feet in thickness, was seen cropping out in the river cliff by the side of a large tributary of the Ohio, where it was worked by horizontal galleries. Pittsburg and other interesting localities in the neighbourhood were also visited, and then the Lyells descended the Ohio River to Cincinnati. He had thus traversed in descending order the succession of strata from the Carboniferous to the Lower Silurian or Ordovician system, which is exposed in the neighbourhood of that town. This, however, was not the only attraction offered by Cincinnati. Some two-and-twenty miles distant is the famous Big Bone Lick in Kentucky. Here some saline springs break out on a nearly level and boggy river plain, which are still attractive to wild animals, and often in past time lured them to their death in the adjacent quagmires. Here the bones of the mastodon and the elephant, of the megalonyx, stag, horse, and bison, have all been found, some in great numbers; and the last-named animals had frequented the springs within the memory of persons who were living at the time of Lyell's visit. These bones are generally embedded in a black mud, at a depth of about a dozen feet below the surface of the creek. Lyell suggests that very probably the heavy mastodons and elephants were lost by shoving one another off the tracks and into the more marshy ground as they struggled to satisfy themselves at the springs; just as horses, cattle, and deer get pushed into the stream in thronging to the rivers on the pampas of South America.
From Cincinnati the travellers struck northward to Cleveland on Lake Erie, going across a region which at that time was still being cleared and settled, and getting an experience of that American form of travellers' torture called a corduroy road. The lake-ridges – curious mounds or terraces of water-worn materials – in the neighbourhood of Cleveland afforded a new subject for an investigation which was continued in the vicinity of Ontario. But before reaching this lake Lyell spent a week at the Falls of Niagara, revising and enlarging the work already done. During the time he investigated the buried channel which appears to lead from the whirlpool to St. Davids, a league or so to the west of Queenstown. This was supposed by Lyell and many subsequent geologists to indicate part of an old course of the St. Lawrence, which had afterwards been blocked up by glacial drifts. It is, however, according to Professor J. W. Spencer, only a branch of a buried valley, outside the Niagara cañon and much shallower than it, which has been cut through by the present St. Lawrence, and has merely produced an elongation of the chasm at the Whirlpool.102 Another series of lake-ridges was examined in the neighbourhood of Toronto. Here Lyell traced them to a height of 680 feet above the level of Ontario, seeing in all no less than eleven, some of them much reminding him of the ösar which he had examined in Sweden. In regard to these lake-ridges he writes thus: —
With the exception of the parallel roads or shelves of Glenroy and some neighbouring glens of the Western Highlands in Scotland, I never saw so remarkable an example of banks, terraces, and accumulations of stratified sand and gravel, maintaining, over wide areas, so perfect a horizontality, as in the district north of Toronto.103
Leaving Toronto on June 18th, they descended the St. Lawrence to Montreal and Quebec. The neighbourhood of either town afforded opportunities for much interesting work, especially in the drift deposits; the underlying ice-worn surfaces of crystalline or Palæozoic rock reminding Lyell of what he had seen in Scandinavia. At Montreal, the great hill, which gives its name to the town built upon its lower slopes, affords some highly interesting sections. It is composed of Palæozoic limestone, which has been pierced by more than one mass of coarsely crystalline intrusive rock and cleft by many dykes of a more compact character. Near the junction with the larger intrusive masses the limestone becomes conspicuously crystalline, and the fossils disappear, just as in the cases which Lyell had already seen about the border of granite in Scandinavia. Some also of the igneous rocks now possess a further interest, for they contain nepheline, a mineral not very common. This, however, had not been recognised at the time of Lyell's visit. The limestone in some of the quarries is wonderfully ice-worn, and the overlying drifts are in many ways remarkable. Of these drifts, Lyell examined various sections, at heights of from 60 to 200 feet above the St. Lawrence, finding plenty of sea-shells,104 the common mussel being in one place especially abundant. He also examined some sections of stratified drifts between Montreal and Quebec, but without obtaining any fossils, though they had been found by Captain Bayford and others. The drifts, however, near the latter city were more prolific. With their shells, indeed, he was already, to some extent, familiar, for in the year 1835 he had received a collection from Captain Bayford. This happened to reach London at a time when Dr. Beck of Copenhagen was with him, and "great was our surprise," he writes, "on opening the box to find that nearly all the shells agreed specifically with fossils which, in the summer of the preceding year, I had obtained at Uddevalla in Sweden." The most abundant species were still living in northern seas, some in those of Greenland and other high latitudes; while in Sweden they were found fossil between latitudes 58° and 60° N., and here in latitude 47°. These fossil shells occur at Beaufort, about a league below Quebec, and about a quarter of a mile from the river, in deposits which have filled an old ravine in the Palæozoic rock. A laminated clay forms the lowest bed, above which comes a stratified sand, and this is followed by a clay containing boulders, each of these deposits being about twenty-five feet thick. They are without fossils, which begin with the next bed, a stratified mass of pebbly sand and loam, and become more frequent, till at last this passes into a mass nearly twelve feet thick, consisting almost wholly of the well-known bivalve Saxicava rugosa. This deposit was about 150 feet above the level of the sea. Afterwards, in travelling southwards from Montreal, whither he returned from Quebec, Lyell found marine shells on the border of Lake Champlain, about eighty miles from the former town. Here they occurred in a loam, which was covered by a sand, and rested on a clay about thirty feet thick, containing boulders, some of them nine feet in diameter.