Полная версия
Физиолого-биохимические показатели при стимуляции репродуктивной функции коров. Монография
Установлено влияние «Хелавита» на организм коров при круглогодовом стойловом содержании (Карпенко А. А.,2012). Отмечена эффективность использования природных адаптогенов в профилактике послеродовых осложнений у коров (Баймишев М. Х., 2012). Рекомендован стимулятор обменных процессов «СТЭМБ» (стимулятор эмбриональный) и водный настой крапивы двудомной, которую готовили по общепринятой методике на бидистиллированой воде из расчета 1:10, применяли в разведении 1:50 по М. А. Багманову (2005) и препарат инъецировали в дозе 120 мл в область седалищно-прямокишечной ямки в рыхлую соединительно-тканную клетчатку на глубину 4—9 см с двух сторон двукратно в день. Биохимические показатели крови за 5 дней до отела в опытной группе по сравнению с животными контрольной группы были больше по содержанию фосфора – 0,04 и 0,12 ммоль/л, кальция – 0,04 и 0,26 ммоль/л, щелочного резерва – 3,4 и 5,2 об%СО2, сахара – 0,86 и 2,44 мг%, общего белка – 2,8 и 4,6 г/л, в том числе альбуминов – 2,22 и 4,70% соответственно (Баймишев М. Х., 2010).
Для регуляции обменных процессов представлено физиологическое обоснование применения карнитина сельскохозяйственным животным для коррекции метаболизма и повышения продуктивности (Богомолова Р. А., 2009). Применение сухостойным и дойным коровам 1% витаминно-минерального премикса в сочетании с энергетическими кормовыми добавками («Пропи-ленгликоль», «Бергафат Т-300», «Профат») в различные по продолжительности сроки в течение сухостойного периода (60 дней и 15 дней) и в период раздоя (30 и 60 дней) по предложенным нами схемам, оказывает благоприятное влияние на состояние обменных процессов в организме (Крупин Е. О., 2010). Исследованиями установлено, что одним из важнейших физиологических стимуляторов является карнитин (CН3) 3N+СН2СН (ОН) СН2СООН, -y-N-триметил-Р-оксимасляная кислота. Установленные исследователями изменения в количестве белков в сыворотке крови коров в зависимости от возраста показывают, что у коров 6-7-й лактаций во время половой охоты содержание белка в крови выше, чем содержание его в крови у молодых животных. Установлено, что уровень белка находится на верхнем пределе физиологической нормы у молодых коров во время беременности. Концентрация белков сыворотки крови больше во время половой охоты у коров с низкой продуктивностью и понижен у животных с высокой продуктивностью. В начале сухостойного периода, уровень белка в крови снижен у всех молочных коров, а после родов в сыворотке крови количество белка увеличивается и в течение первых десяти дней после отела не изменяется.
Исследования показали, что наибольшей оплодотворяемости коров можно достичь, когда уровень белка во время половой охоты будет наиболее высоким (Джамбулатов М. М., 2007).
Отмеченные колебания уровня белка в крови беременных коров и сразу после родов, является физиологически важной адаптационно – трофической функцией материнского организма, направленной на рост и нормальное развитие плода, а так же накопление белка для питания плода в послеродовом периоде.
Исследованиями установлено (Ивашкевич О. П., 1988), что снижение уровня белков, и в основном гамма-глобулинов, перед родами объясняется накоплением их в молочной железе в виде иммунных глобулинов молозива (Пучковский А. И., 1963, 1974). Отмечено, что коровы имеющие пониженное содержание белка, в основном плохо оплодотворяются (Черемисинов Г. А., 1981; Теппермен Д. Ж., Теппермен Х., 1989; Зайцев С. Ю., 2005).
Особое значение имеет нарушение соотношения альбуминовой и глобулиновой фракций белка. Как отмечено многими исследователями, у таких коров отмечаются различные функциональные заболевания репродуктивных органов (Нежданов А. Г., с соавт., 1992; Михайлов В. И., Шушлебин В. И., 2003; Косорлукова З. Я., с соавт., 2004; Ковалев М. П., Алексеев Н. П., Обуховский В. М., 2005; Шахов А. Г., 2005; Krakowski l., et al., 2005).
Физиолого-биохимические изменения, происходящие в процессе адаптации организма во время беременности и после родов, раскрывают сложные его взаимосвязи с окружающей средой и фазами репродуктивного цикла (Студенцов И. П.,1982; Прозорова М. М., 1994; Федоров Ю. Н., 1996; Кремнев О. В., 2002).
Установлена необходимость и важность учитывания уровня кормления и применения различных технологий регулирующих и активизирующих процессы обмена веществ (Андрейчук П., 1997; Еловиков С. Е., 2007). Особое значение приобретают мероприятия направленные на регуляцию обмена веществ особенно в начале сухостойного и сервис периода, так как после родов у коров наблюдается особая потребность в белках, липидах и минеральных веществах, которая мобилизует все резервы организма (Гандуева Д. Т., 1991;Жаров А. В., 1994; Волков С. С., 1999; Борискин Н. А., 2005; Власова Г. С., 2006; Витвицкий В. Н., 2007; Максимюк Н. Н., 2007; Баймишев Х. Б., 2010;).
Очень много коров в послеродовом периоде имеют пониженное содержание белка, каротина и резервной щелочности, которые негативно влияют на уровень естественной резистентности (Серебряков Ю. М., 1999). Исследованиями установлено, например, что белоксодержащее соединение карнитин находится в митохондриях клеток, в основном в скелетных мышечных волокнах, где содержание его составляет 20—50 мг%. В организме он синтезируется из лизина. Выделяют из природных источников или синтезируют из эпихлоргидрина и натрия цианида NaCN или триметиламина (CH3) 3N. У коров карнитин в дозах 20 и 40 мг/кг живой массы, при кормлении в течение 3-х месяцев, интенсифицирует обмен липидов в печени на 39,1.43,5%, повышает концентрацию в крови насыщенных жирных кислот на 5,6—9,5%. У коров опытной группы в крови молочной вены было больше белков на 1,8—2,1% в сравнении с коровами контрольной группы. Кровь, оттекающая от вымени, содержит меньше белков на 2,6—3,7%, чем кровь яремной вены. Использование карнитина в дозах 30 и 50 мг/кг живой массы у телят пятимесячного возраста увеличивает в крови количество лейкоцитов на 2,67—5,34% (р <0,05), бактерицидную активность сыворотки крови на 18,46—42,5%, концентрацию лизоцима на 2,1—5,1%, бета-литическую активность на 18,76—34,36%, активность фагоцитоза на 9,1—23,3% (р <0,05), количество Т-хелперов на 8,1—16,6%, снижает количество Т-супрессоров на 3,3—4,7%. При этом количество Gg на 3,2—15,5%, Jg М -на 8,2—21,4%, Jg А-на 35, 9%.
Отмечено (Jadhav S., et al., 1977; Sahukaz C.S., et al., 1985), что наибольшая концентрация холестерина возникает в крови во время охоты, где уровень повышен в два раза от периода анэструса. Наибольший подъем количества общих липидов в плазме крови отмечен на 4-м месяце лактации. Наименьшая концентрация липидов наблюдалась в крови коров перед родами, во время сухостойного периода (Ильина Е. А., 1992). Установлено, что во время родов количество общих липидов было наименьшим (Пурэвжавэн Э., 2000). Аналогичное состояние отмечено и при наличии акушерской патологии после родов (Прыгунова Е. В., с соавт., 1998). В исследованиях по содержанию холестерина, отмечается наличие взаимосвязи его и β – липопротеидов (Сапожков В. С., 1995). Снижение количества общих липидов при наличии акушерской патологии связывают с увеличением концентрации свободного и эфиросвязанного холестерина, триглицеридов, НЭЖК (Паршин П. А., 1988).
Возникающие изменения физиологического состояния у молочных коров перед родами, во время сухостоя и после родов, характеризуются напряжением процессов адаптации и иммунобиологической реактивности организма (Петров Ю. Ф., 1994; Федоров Ю. Н., 1994; Иванов В. И., 1995; Таов И. Х., 2002; Молоканова И. В., 2002 и др.). Нарушения в содержании витаминов, особенно Е и D, дефицит клетчатки, углеводов, которые приводят к нарушениям рубцового пищеварения, а так же нарушения кислотно – щелочного баланса и соотношения кормов в рационе (Larson S., et al., 1997; Bengoumi M., 2000; Скопичев В. Г., 2005; Киселев А., 2005), приводят к нарушениям оплодотворения животных.
Липидный обмен начинается у коров с момента поступления корма в преджелудки. Образующаяся, в том числе, уксусная кислота вместе с другими кетоновыми телами после расщепления жиров корма, участвует в энергетическом обмене и синтезирует жиры молока и организма, но, вместе с тем, может и влиять на образование кетоновых тел «отравляющих» организм (Воскобойник В. Ф., 1988). Из липидов холестерин, как важный клеточный элемент входящий в мембрану клетки, играет важную роль в образовании и функционировании мембранных липидов молочной железы. Так же установлено, что имеется достаточно выраженное влияние половых гормонов на обмен холестерина, в связи с чем, наступление лактации напрямую связано с наступлением половых циклов и оплодотворением. Установлено, что у здоровых коров повышение уровня холестерина в крови является следствием недостаточного поступления углеводов с кормами (Шамберев Ю. Н., с соавт., 1986).
В течение полового цикла отмечены изменения уровня липидных показателей, которые зависят от стадий и феноменов цикла (Boitor I., 1989). Установлена высокая концентрация холестерина во время феномена половой охоты (Jadhav S. et al., 1977). Отмечено, что восстановление половых циклов у самок животных в течение репродуктивного периода характеризуется большим повышением содержания общего холестерина в сыворотке крови, который характеризует специфику трансформации метаболических процессов и реакций в начале лактации и создания условий в организме животных для восстановления полноценных половых циклов и дальнейшего оплодотворения (Василенко Т. Ф., 2007). Установлено, что концентрация холестерина у коров в период эструса повышалась до 84,91 мг/100 мл по сравнению с анэстральным периодом (45,31 мг/100 мл). Важное значение имеют и другие липидные метаболиты, среди которых в крови коров основными являются изменения по содержанию β-липопротеидов и триглицеридов (Слободяник В. И., 1992; Смирнова Л. В., 1992). Исследовтелями отмечен подъем концентрации общих липидов в плазме крови коров к четвертому месяцу лактации, а наименьший уровень общих липидов у коров происходит в сухостойный период и непосредственно перед родами. Исследователи регистрировали уменьшение содержания липидов к 270 дню беременности на 44,3% (Ильина Е. А., 1992) по отношению к ее концентрации в начале беременности. Полученные данные показали (Пурэвжавэн Э., 2000), что количество общих липидов во время сухостойного периода было в пределах 5,0±0,5 г/л, а в период родов – 4,5±0,3 г/л. После родов количество общих липидов к 15-у дню составило 4,8±0,5 г/л. Автором отмечено снижение содержания общих липидов в крови при наличии заболеваний репродуктивных органов у коров. Отмечено (Паршин П. А., 1988), что у здоровых коров количество общих липидов больше на 12,8%, чем у больных (Сафонов В., 2008). Результаты других исследований показывают снижение общих липидов у здоровых коров на 7,2% при нормальных родах, по отношению к животным с заболеваниями репродуктивных органов (Прыгунова Е. В., 1998). Установлено, что во время родов концентрация общих липидов снижалась до минимальных значений. Сделано заключение, что повышение общих липидов связано с увеличением содержания свободного холестерола, триглицеридов и НЭЖК (Паршин П. А., 1988).
Известно, что система иммунитета организма животных состоит из факторов специфического и неспецифического характера защиты (Никитин Ю. И., 1991; Корнева Е.А,, 1993; Кузнецов Е. В. 2002; Косорлукова З. Я., 2004), которые влияют на функцию воспроизводства. Специфическая защита осуществляется за счет лимфоцитов, а неспецифическая за счет наличия и активности макрофагов, тучных клеток и гранулоцитов. При формировании иммунного ответа выделяют афферентный период, в котором происходит распознавание антигена и активация иммунокомпетентных клеток (Золотарева Н. А., 2002). За этим периодом следует перод активизации в иммунный процесс клеток-предшественников, их пролиферация и дифференциация в клетки памяти и клетки-эффекторы, наконец, эффекторная фаза, когда наступает разрушение и выведение активного антигена из организма (Goldstein G., Lan C. J., 1980; Соколовская И. И., 1982; Федоров Ю. Н., Верховский О. А., 1996; Шиффман Ф. Д., 2000; Hull K.L., Harvey S., 2001; Воронин Е. С., 2002; Федотова Н. А., 2004; Хохлов А. В., Безбородов Н. В., ПоздняковаВ. Н., 2004; Зайцев С.Ю, Конопатов Ю. В., 2005; Жаров А. В., Жарова Ю. П., 1994, 2010).
При оценке уровня обменных процессов у коров в различные периоды репродуктивного цикла, следует особое внимание уделять иммунологическому статусу коров (Aiuti F., Businco B.,1980; Goldstein G., Lan C.J.,1980; Beer A.,1983; Flamming K. et al.,1993; Greco D.S., Harpold L.M.,1994; Mepham T.B., Forbes J.M.,1995; Gragam D.A., 1998; Atanackovic D., Brunner-Weinzierl M.C., Krogtr H. et al.,2002; Novak W.,2005; с разным уровнем продуктивности и уровнем кормления (Lamonthe P. еt al., 1972; Афанасьев И. Н., 1972; Jadhav S. et al., 1977; Слободяник В. И., 1992; Смирнова Л. В., 1992). Исследованиями было отмечено, что с увеличением продуктивности коров наблюдается снижение количества иммунокомпетентных клеток и фагоцитарной активности нейтрофилов (Гугушвили Н. Н., 2000; Долгушин И. И., Бухарин О. В., 2001; Дегтярев В. П.,2006). Так, у коров с удоем за лактацию 5 тыс. кг молока содержание иммунокомпетентных клеток находится в пределах нижней физиологической границы. При повышении продуктивности до 6 тыс. кг и более наблюдается снижение количества Т-лимфоцитов на 25,4%, В-лимфоцитов – на 11,3%, индекс Т/В-лимфоцитов становится меньше на 12,6%, показатель фагоцитарной активности нейтрофилов снижается на 5,4% по сравнению с более низкопродуктивными животными. Авторами (Донник И. М., с соавт., 2010) установлена обратная корреляционная зависимость между молочной продуктивностью и показателями иммунологической реактивности коров. При оценке иммунологического статуса коров с разным уровнем продуктивности было установлено, что с ее увеличением наблюдается снижение количества иммунокомпетентных клеток, фагоцитарной активности нейтрофилов. У коров с удоем за лактацию 5 тыс. кг молока содержание иммунокомпетентных клеток находится в пределах нижней физиологической границы. При повышении продуктивности до 6 тыс. кг и более наблюдается снижение количества Т-лимфоцитов на 25,4%, В-лимфоцитов – на 11,3%, индекс Т/В-лимфоцитов становится меньше на 12,6%, показатель фагоцитарной активности нейтрофилов снижается на 5,4% по сравнению с более низкопродуктивными животными. Установлена обратная корреляционная зависимость между молочной продуктивностью и показателями иммунологической реактивности коров. Состояние обменных процессов является основным фактором, обеспечивающим высокий уровень иммунного статуса, продуктивности и продолжительность хозяйственного использования животного (Ельчанинов В. В., 1997; Самохин В. Т., 2003; Донник И. М., 2008; Мымрин В. С.,2008; Овчинникова Л. Ю., 2008; Шкуратова И. А., Верещак Н. А., 2008).
Гуморальные и клеточные факторы неспецифической защиты организма коров имеют сезонную динамику. Бактерицидная активность сыворотки крови в зимний период имела самые низкие значения (58,4 ±2,62% лизиса Е. соН), к осени БАСК достегает своего максимума 78,45±9,36% лизиса Е. соП. Для активности лизоцима отмечается максимальные значения также в осенний период они составляют 14,52±0,95% лизиса, эти данные достоверно выше минимальных значений в весенний период па 28%. Минимальная фагоцитарная активность нейтрофилов крови (65,89±8,85), фагоцитарное число (22,45±5,67) и фагоцитарный индекс (9,46±1,47) наблюдается у коров в зимний период, максимальная активность фагоцитоза отмечена в летний период (76,5±9,36;31,4±8,45; 14,56±2,2 соответственно). Таким образом, зимний период характеризуется снижением активности гуморальных и клеточных факторов неспецифической защиты организма.
Исследованиями предложено применение биологически активного гидролизного биопрепарата для регуляции обменных процессов (Прокофьева Н. Л.,2000). Определено положительное влияние биопрепарата на обмен веществ, естественную резистентность, воспроизводительную функцию и молочную продуктивность коров. На основании полученных данных показана эффективность применения гидролизного биопрепарата при скармливании коровам.
Изучены особенности обменных процессов у коров в условиях Среднего Поволжья и пути их коррекции (Мещерякова Г. В., 2007). Неблагоприятные условия среды обитания животных обусловливают изменение обменных процессов, которые носят катаболический характер и сопровождаются снижением содержания альбуминов на 17,05%, α- и γ – глобулинов – на 7,10 и 12,23%, увеличением активности АсАТ на 53,14, АлАТ – 58,35%; повышением содержания β-липопротеидов на 8,52 и холестерола – 30,41%. Повышение концентрации молочной кислоты в 1,6 раза, пировиноградной кислоты – на 21,7%, и коэффициента лактат/пируват – на 33,8% указывает на гипоксический профиль углеводного обмена. Напряженность функционального состояния антиоксидантной системы защиты организма подтверждается увеличением в 1,5 раза содержания малонового диальдегида и снижением на 28,94% концентрации церулоплазмина.
ГЛАВА 4. Свойства пептидных биокорректоров
В настоящее время применение эффективных и экономически выгодных биотехнологических методов стимуляции продуктивных показателей животных при промышленном выращивании, осуществляется за счет производства и широкого применения синтетических полифункциональных биологически активных веществ – биокорректоров, обладающих свойствами повышения сохранности поголовья и продуктивных показателей животных находящихся в условиях промышленного выращивания. Рекомендуемые к применению биокорректоры содержат биологически активные комплексы высоко активных в химическом отношении веществ для организма животных. Свойства пептидных соединений непосредственно участвовать в реакциях обмена веществ различных органов и систем, создает предпосылки для их широкого использования в качестве средств регуляции физиологических и биохимических процессов, обеспечения гомеостаза и адаптации к меняющимся факторам внешней и внутренней среды организма. Исходя из этих важных свойств и особенностей, такие соединения названы биокорректорами (Степанов В. М., 1996; Березов Т. Т., 1998; Комов В. П., 2004; Щербаков В. Г., 2003; Витвицкий В. Н., 2009; Картелишев А. И., 2012).
Одним из ключевых факторов эффективной регуляции обменных процессов является стимуляция иммунной системы (Коч Е. П., Хомяк И. И., Яблонская О. В.,1986). Согласно современным представлениям о морфофункциональных взаимосвязях в организме, иммунная система рассматривается как система контроля, обеспечивающая индивидуальные особенности организма. Структура иммунной системы организма состоит из основных центральных и периферических органов. К основным относится тимус, состоящий из коркового и мозгового слоев продуцирующих Т-лимфоциты и красный костный мозг, вырабатывающий предшественников Т- и В-лимфоцитов. К периферическим относятся: лимфоузлы, селезенка и лимфообразования пищеварительных и других органов (Воронин И. И.. 2002).
Все органы кроветворения и иммуногенеза функционально тесно связаны между собой (Кремнев О. В.,2002). Контроль за процессами кроветворения и иммуногенеза обеспечивает нервная и эндокринная системы (Скопичев В. Г., с соавт., 2004).
Исследованиями отмечено, что различные регуляторы физиолого-биохимических процессов имеющие пептидную природу (Морозов В. В.,2000; Полетаев А. Б., Морозов С. Г., Ковалев И. Е.,2002) в организме находятся во всех тканях органов. Еще при формировании и развитии эмбриона в организме самки различные пептидные биорегуляторы поступают в клетки растущего плода. В ходе развития эмбриона, дифференциация его тканей и органов контролируется гормонами, ферментами и другими факторами роста и развития организма с участием экспрессии генов и процессов биосинтеза.
Наличие особой роли пептидных соединений в регуляции процессов роста и развития, послужило предпосылкой к применению различных биокорректоров пептидной природы для регуляции процессов обмена веществ (Шпаков А. О., 2008).
В настоящее время предполагается существование двух механизмов, посредством которых модификаторы биологического ответа могут усиливать иммунитет. Первый связан с угнетением образования супрессорных клеток, что приводит к повышению активности эффекторных Т-клеток. Второй механизм обеспечивает увеличение пролиферации Т-клеток-эффекторов.
Таким образом, установлено, например, что для коррекции нарушений показателей иммунной системы животных, вызванных отравлением, эффективным является введение per os пептидных фракций из органов иммунной системы телят – тимуса, селезенки и брыжеечных лимфатических узлов. Предложенные пептидные биокорректоры могут быть использованы как самостоятельно, так и в качестве компонентов для лечебно-профилактического назначения для животных с нарушенным иммунным статусом. Разработка методов и средств изначально предполагала использование различных видов экстрактов из органов животных с последующим их применением для компенсации недостаточности протекания определенных процессов в организме.
Одним из первых было выделено и предложено дипептидное (аланин-гистидин) соединение карнозин (β-Ala-His), открытое еще в 1900 году в России. Ранее проведенными исследованиями было установлено, что карнозин имеет широкий эффективный спектр действия на различные физиологические процессы в организме, основной из которых является способность выполнять функции главного гидрофильного внутриклеточного антиоксиданта и способствовать защите клеточной мембраны от негативного действия молекул активного кислорода.
В пептидных соединениях группа —СО-NН— называется пептидной группой, а связь между атомами углерода и азота в пептидной группе – пептидной связью. В этой связи производное реакции, образовавшийся из остатков двух аминокислот, называется дипептидом. Наличие в формуле этого соединения свободных α-аминных и α-карбоксильных групп способны образовывать новые пептидные связи с другими амнокислотами. В дальнейшем после присоединения к дипептиду еще одной аминокислоты образуется трипептид и т. д. Исследователи предложили называть пептиды, содержащие от двух до десяти аминокислотных остатков – полипептидами (Ленинджер А., 1985; Эллиот В., Эллиот Д., 1999).
В результате проводимых исследований исследователями был предложен в 1966 году полипептидный препарат тимозин, который представлет собой фрагмент белков тимуса и состоит из 28 аминокислотных остатков. В предварительно проведенных опытах на лабораторных животных было установлено, что тимозин, например, повышает иммунологическую реактивность и способствует устойчивой активизации сопротивляемости организма к неблагоприятным факторам внешней и внутренней среды организма. В дальнейшем был выделен пентапептидный фрагмент молекулы тимуса – тимопентин (Arg-Lys-Asp-Val-Tyr), обладающий хорошей биологической активностью. В дальнейшем из экстракта селезенки животных был произведен еще один пептидный иммунорегулятор, состоящий также из пяти аминокислотных остатков – спленопентин, который отличался от тимопентина тем, что вместо остатка аргинина в нем присутствовал остаток глутаминовой кислоты (Arg-Lys-Glu-Val-Tyr). Была отмечена разница и в их биологической роли по регуляции иммунных процессов в организме, а именно тимопентин индуцировал дифференцировку Т-лимфоцитов, в то время как спленин – способствовал созреванию в основном В-лимфоцитов. В дальнейшем, при углубленных исследованиях данного направления, был осуществлен синтез тетрапептида (Arg-Lys-Asp-Val) и трипептида (Arg-Lys-Asp). Проведенная исследователями работа впоследствие показала, что эти укороченные олигопептиды имели более выраженную иммуномодулирующую активность, чем тимопентин и тимозин. Исследования, проводимые в этой области, свидетельствуют о том, что биологическая активность большой молекулы, состоящей из многих десятков аминокислотных остатков, может быть воспроизведена искусственным путем в процессе сочетания коротких пептидных последовательностей, протяженностью в 2—4 аминокислотных остатка. Такие короткие пептидные цепочки, которые обладают свойствами больших молекул тимического происхождения, были названы тимомиметиками. Тимомиметики были впервые предложены в 1985 году и первоначально это название относилось к пуриновым иммуномодуляторам, которые содержали инозин и гипоксантин. Позже было установлено, что эти вещества влияли на процессы пролиферации и дифференцировки предшественников Т-лимфоцитов, а также стимулировали клеточный и гуморальный иммунный ответ. Исследованиями также было показано, что аналогичными свойствами по организации факторов клеточного и гуморального иммунитетов обладают пептидные соединения левамизол, изопринозин и 2-4-членные пептидные соединения.
Установлено, что в тимусе происходит дифференциация и созревание поступающих туда стволовых клеток костного мозга в субпопуляцию Т-лимфоцитов, которые обладают хелперной, супрессорной и киллерной активностью (Воронин И. И.. 2002). Из тимуса выделены пять биологически активных полипептидных соединений: тимозин; гомеостатический тимусный гормон; тимопоэтин 1; тимопоэтин 2 и тимусный гуморальный фактор. Установлено, что продуцируемые тимусом гормональные соединения влияют на скорость развития и созревания димфоидных клеток. Кроме того исследованиями установлено, выработка тимусом гормонов контролируется гипофизом и косвенное участие в этом принимают гормоны щитовидной железы, коры надпочечников и половые гормоны (Gortner R., 2001; Loose – Mitchell D.S., 2001; Hebel S.C., 2003).