bannerbanner
Как учится машина. Революция в области нейронных сетей и глубокого обучения
Как учится машина. Революция в области нейронных сетей и глубокого обучения

Полная версия

Настройки чтения
Размер шрифта
Высота строк
Поля
На страницу:
3 из 3

Так я и узнал о существовании обучающейся машины. Эта тема меня просто очаровала! Поскольку я не учился по средам после обеда, я начал рыскать по полкам библиотеки Национального института компьютерных и автоматических исследований в Роккенкуре (National Institute for Research in Digital Science and Technology, сокращенно «Inria»). У этого учреждения самый богатый библиотечный фонд ИТ-литературы в Иль-де-Франс. Я вдруг понял, что на Западе больше никто не работает с нейронными сетями, и с еще большим удивлением обнаружил, что книга, положившая конец исследованиям перцептрона, принадлежит перу того же самого Сеймура Паперта!

Теория систем, которую в 1950-х гг. мы называли кибернетикой, и которая изучает естественные (биологические) и искусственные системы – еще одна моя страсть. Возьмем, например, систему регулирования температуры тела: организм человека поддерживает температуру 37 ℃ благодаря наличию своеобразного «термостата», который корректирует разницу между своей температурой и температурой снаружи.

Меня увлекла идея самоорганизации систем. Каким образом относительно простые молекулы или объекты могут спонтанно организовываться в сложные структуры? Как может появиться интеллект из большого набора простых взаимодействующих нейронов?

Я изучал математические работы по теории алгоритмической сложности Колмогорова, Соломонова и Чайтина. Книга Дуды и Харта[17], о которой я уже упоминал, стала для меня настольной. Я читал журнал «Биологическая кибернетика» («Biological Cybernetics. Advances in Computational Neuroscience and in Control and Information Theory for Biological Systems», издательство Springer), посвященный математическим моделям работы мозга или живых систем.

Все эти вопросы, оставленные без ответа в период застоя искусственного интеллекта, не выходили у меня из головы, и у меня постепенно стало формироваться убеждение: если мы хотим создавать интеллектуальные машины, недостаточно, чтобы они работали только логически, они должны быть способными учиться, совершенствоваться на собственном опыте.

Читая все эти труды, я понимал, что часть научного сообщества разделяет мое виденье проблемы. Вскоре я познакомился с работами Фукусимы и задумался о способах повышения эффективности нейронных сетей неокогнитрона. К счастью, ESIEE предоставлял студентам компьютеры, которые для того времени были очень мощными. Мы писали программы с Филиппе Метсу, школьным другом, любителем искусственного интеллекта, как и я, хотя его больше интересовала психология обучения детей. Преподаватели математики согласились заниматься с нами дополнительно. Вместе мы пытались моделировать нейронные сети. Но эксперименты отнимали очень много сил: компьютеры не тянули наши эксперименты, а написание программ было сплошной головной болью.

На четвертый год обучения в ESIEE, одержимый этим исследованием, я догадался о не совсем математически обоснованном правиле обучения многослойных нейронных сетей. Я представил алгоритм, который будет распространять сигналы в обратном направлении по сети, начиная с выходного слоя, чтобы обучать сеть от начала до конца. Я назвал этот алгоритм HLM (от Hierarchical Learning Machine)[18].

Я очень гордился своей идеей… HLM является предшественником алгоритма «обратного распространения градиента», который сегодня повсеместно используется для обучения систем глубокого обучения. Вместо распространения обратных градиентов в сети, как это происходит сегодня, HLM распространял желаемые состояния для каждого нейрона. Это позволяло использовать бинарные нейроны, что являлось преимуществом, учитывая медлительность компьютеров того времени для выполнения умножения. HLM был первым шагом в обучении многоуровневых сетей.

Коннекционистские модели обучения

Летом 1983 г. я получил высшее образование по специальности «инженер». Тогда же я наткнулся на книгу, в которой рассказывалось о работе небольшой группы французов, интересующихся самоорганизующимися системами и сетями автоматов. Они экспериментировали в бывшем помещении Политехнической школы на холме Святой Женевьевы в Париже. Эта лаборатория сетевой динамики (Laboratoire de dynamique de réseau, или LDR) была независимой, хотя ее члены занимали должности в разных высших учебных заведениях. У них было мало денег, не было планового бюджета, а их компьютер нуждался в ремонте. Это означало, что исследования машинного обучения во Франции висят на волоске! Я решил примкнуть к ним. Я мог реально помочь им, потому что эти ученые не занимались изучением старых публикаций по нейронным сетям, как это делал я.

Я решил объяснить им, что меня интересует эта тема и что в своей инженерной школе я занимаюсь схожей тематикой. Я работал в их группе, продолжая учебу в аспирантуре в Университете Пьера и Марии Кюри. В 1984 г. мне нужно было подать заявление на защиту докторской диссертации. Я занимал должность младшего научного сотрудника ESIEE по гранту, но мне нужно было найти себе научного руководителя. Много времени я работал с Франсуазой Фогельман-Суле (сейчас Сули-Фогельман), которая в то время преподавала компьютерные науки в Университете Париж-V и, по логике вещей, именно она должна была бы курировать мою диссертацию, но у нее не было на это полномочий, поскольку она еще не прошла государственную сертификацию на право руководить аспирантами (необходимую во многих европейских странах).

Поэтому я обратился к единственному члену лаборатории, который мог курировать диссертацию по информатике, – Морису Милграму, профессору информатики и инженерии Технологического университета Компьена. Он согласился, но дал понять, что не сможет мне сильно помочь, потому что ничего не знает о нейронных сетях, но я и так был безмерно благодарен ему за эту помощь. Поэтому я посвятил свое время одновременно ESIEE (и ее мощным компьютерам) и LDR (и ее интеллектуальной среде). Я попал на ранее неизвестную мне территорию, и это было интересно.

За рубежом исследования, близкие к моим, набирали обороты. Летом 1984 г. я сопровождал Франсуазу Фогельман в Калифорнию, где прошел месячную стажировку в известной многим лаборатории Xerox PARC.

В то время, я помню, в мире было два человека, с которыми я мечтал встретиться: Терри Сейновски – биофизик и нейробиолог из Университета Джона Хопкинса в Балтиморе, и Джеффри Хинтон из Университета Карнеги-Меллон в Питтсбурге – тот самый, кто поделит с Йошуа Бенджио и мной Премию Тьюринга в 2019 г. В 1983 г. Хинтон и Сейновски опубликовали статью о машинах Больцмана[19], которая содержит процедуру обучения сетей со «скрытыми нейронами», то есть нейронами в промежуточных слоях между входом и выходом. Я увлекся этой статьей именно потому, что в ней говорилось об обучении многослойных нейронных сетей. «Главный» вопрос в моей работе! Эти люди сыграли важную роль в моей жизни!

Лез-Уш

Моя профессиональная жизнь изменилась в феврале 1985 г. во время конференции в Лез-Уш, в Альпах. Там я встретился с лучшими представителями мировой науки, интересующимися нейронными сетями: физиками, инженерами, математиками, нейробиологами, психологами и, в частности, членами новой развивающейся исследовательской группы в области нейронных сетей, которая сформировалась внутри легендарной лаборатории Bell Labs. Через три года я попал в эту группу благодаря знакомствам, которые приобрел в Лез-Уш.

Встреча была организована теми французскими исследователями из LDR, с которыми я уже работал: Франсуазой, ее тогдашним мужем Жераром Вайсбухом, профессором физики ENS, и Эли Биненштоком – нейробиологом-теоретиком, работавшим в то время в CNRS. Конференция собрала вместе физиков, интересующихся «спиновыми стеклами», а также ведущих физиков и нейробиологов.

Спин – это свойство элементарных частиц и атомов, которое можно описать по аналогии с маленькими магнитами, с обращенными вверх или вниз полюсами. Эти два значения спина можно сравнить с состояниями искусственного нейрона: он либо активен, либо неактивен. Он подчиняется тем же уравнениям. Спиновые стекла представляют собой своего рода кристалл, в котором примесные атомы имеют магнитный момент. Каждый спин взаимодействует с другими спинами на основе связанных весовых показателей.

Если весовой коэффициент положительный, они, как правило, выстраиваются в одном направлении. Если вес отрицательный, они противопоставляются. Мы связываем значения +1 со спином «вверх», а –1 со спином «вниз». Каждый примесный атом принимает ориентацию, которая является функцией взвешенной суммы ориентаций соседних примесных атомов. Другими словами, функция, определяющая, будет ли спин идти вверх или вниз, аналогична функции, которая делает искусственный нейрон активным или неактивным.

После основополагающей статьи Джона Хопфилда[20], в которой были описаны аналогии между спиновыми стеклами и искусственными нейронными сетями, многие физики начали интересоваться и самими сетями, и их обучением – темами, по-прежнему не приветствовавшимися их коллегами – инженерами и компьютерщиками.

В Лез-Уш я был одним из самых молодых исследователей, и мне пришлось общаться на английском языке о многоуровневых сетях и алгоритме HLM, моем предшественнике алгоритмов обратного распространения. Я только начал подготовку своей диссертации, и нервничал, выступая перед столь именитой аудиторией.

Меня особенно привлекли две личности: Ларри Джекел, глава отдела Bell Labs (позже мне самому довелось работать в этом отделе) и Джон Денкер – настоящий ковбой из Аризоны: джинсовый костюм, большие бакенбарды, ковбойские сапоги… Этот не очень похожий на ученого человек, только что защитивший диссертацию, был невероятно уверен в себе! Когда на него находило вдохновение, он мог быть чертовски убедителен и изобретательно отстаивал свою точку зрения, причем без агрессии и часто вполне обоснованно. Франсуаза Фогельман говорила мне: «У ребят из Bell Labs огромное преимущество. Когда вы только хотите сделать что-то новое, то выясняется, что это либо уже было сделано в Bell Labs десять лет назад, либо это просто не работает». Черт возьми!

Конец ознакомительного фрагмента.

Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

Сноски

1

FLOPS (обозначается также как flops, flop/s, произносится по-русски как «флопс») – акроним от англ. Floating-point Operations Per Second (число операций с плавающей точкой в секунду). Представляет собой внесистемную единицу измерения производительности компьютеров. Правописание и склонение термин в русском языке еще не устоялось: иногда пишут «флоп», иногда «флопс». – Прим. ред.

2

https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix.

3

https://arxiv.org/abs/1706.07068.

4

https://ai.google/research/teams/brain/magenta/.

5

https://www.google.com/doodles/celebrating-johann-sebastian-bach.

6

https://fr.wikipedia.org/wiki/Algorithme_de_Dijkstra.

7

https://fr.wikipedia.org/wiki/Algorithme_A*.

8

Alan Turing, Computing machinery and intelligence, Mind, october 1950, vol. 59, n236.

9

То же.

10

https://fr.wikipedia.org/wiki/Tri_a_bulles.

11

Агентство перспективных исследовательских проектов, которое в 1972 г. переименовали в DARPA (Агентство перспективных оборонных исследовательских проектов), является агентством Министерства обороны по финансированию проектов исследований и разработок (НИОКР).

12

Терабайт – это единица измерения количества цифровой информации, здесь используется в качестве единицы измерения объема памяти. Он составляет 240 байт. Один байт может иметь 256 различных значений.

13

Richard O. Duda, Peter E. Hart, Pattern Classification and Scene Analysis, Wiley, 1973.

14

Marvin L. Minsky, Seymour A. Papert, Perceptrons: An Introduction to Computional Geometry, The MIT Press, 1969.

15

Устройство, состоящее из модулятора и демодулятора, предназначенное для передачи цифровых данных по телефону или по коаксиальному кабелю.

16

Théories du langage, théories de l'apprentissage: le débat entre Jean Piaget et Noam Chomsky, d.bat recueilli par Maximo Piatelli-Palmarini, Centre Royaumont pour une science de l'homme, Seuil, Points, 1979.

17

Richard O. Duda, Peter E. Hart, Pattern Classification and Scene Analysis, p. 6.

18

См. главу 5 «Мой HLM!».

19

Машиной Больцмана называется один из видов нейронных сетей. – Прим. ред.

20

John J. Hopfield, Neural networks and physical systems with emergent collective computational abilities, Proceedings of the National Academy of Sciences, 1982, 79 (8), p. 2554–2558, DOI:10.1073/pnas.79.8.2554.

Конец ознакомительного фрагмента
Купить и скачать всю книгу
На страницу:
3 из 3