bannerbanner
Причина СТО – инвариантность скорости света
Причина СТО – инвариантность скорости света

Полная версия

Настройки чтения
Размер шрифта
Высота строк
Поля

Петр Путенихин

Причина СТО – инвариантность скорости света

Вывод СТО из принципа постоянства скорости света

Все выводы СТО – преобразования Лоренца и релятивистские соотношения получены как корректные математические выводы. Поэтому СТО по своей сути является теорией математической, имеет все её признаки: методология вывода, исходные постулаты. Хотя в основу СТО Эйнштейн положил два постулата (принципа), можно сказать, что СТО фактически базируется на единственном постулате: о неизменности скорости света во всех ИСО – принципе постоянства (инвариантности) скорости света. Покажем это – выведем преобразования Лоренца и основные следствия из них, используя для этого только одно предположение: скорость света "c" всегда одна и та же, независимо от того, движется ИСО или покоится. Иначе можно сказать, что скорость любого фотона равна скорости света, где бы она ни была измерена: в движущейся или в покоящейся ИСО. Это самое общее определение принципа постоянства скорости света. Оно не включает в себя упоминаний об источнике этого фотона и о состоянии движения источника (или приёмника), являющихся излишними. Заявление о предельности скорости света также является производным от принципа постоянства скорости света, его следствием: если скорость света неизменна во всех ИСО, то она автоматически становится максимально возможной скоростью. Назовём этот принцип постоянства скорости света основой теории, а все полученные с его использованием выражения – следствием этого принципа (постулата), следствиями, выводами теории.

Для вывода рассмотрим платформу длиной L, которую пересекает фотон, испущенный неизвестным источником и/или просто пролетающий мимо. Как принято в СТО будем рассматривать две инерциальные системы отсчета – неподвижную К и подвижную К'. Фотон для наблюдателей на платформе пролетит через неё за время t0 = L/c. Сохраним систему обозначений, близкую к принятой в СТО:

L' – длина платформы в инерциальной системе отсчета K';

L – длина платформы в инерциальной системе K;

t' – интервал времени (время), за которое фотон пролетает через платформу и возвращается обратно в системе K';

t – интервал времени (время), за которое фотон пролетает через платформу и возвращается обратно в системе K.

Наблюдатель в движущейся системе K' считает её покоящейся и вычисляет, что фотон преодолеет платформу за время (путь туда и обратно):



Напротив, внешний наблюдатель видит: свет в одном случае догоняет зеркало на противоположном конце платформы, а в другом летит навстречу мишени:



Рис.1 Полет фотона с точки зрения внешнего наблюдателя. Часы внешнего (неподвижного) наблюдателя покажут время t, а часы на платформе (подвижные) покажут время t'.


На рисунке видно, что для внешнего наблюдателя время движения фотона вдоль движущейся платформы туда и обратно составит:



Преобразуем уравнение:



Выражение второй дроби выглядит как квадрат некоторой величины. Обозначим эту величину через k (очевидно, что эта величина больше единицы):



Мы получили показания двух часов: движущихся с платформой – t' и неподвижных, мимо которых движется платформа – t. Очевидно, эти показания различаются. Чтобы узнать, как изменилось "время в полёте" фотона через движущуюся платформу при рассмотрении его в разных ИСО, вычислим отношение этих показаний:



Отсюда после сокращений получаем:



Время t' – это время (интервал времени) пролёта фотона через платформу для наблюдателя, находящегося на этой платформе, а L' – это длина платформы для этого наблюдателя. Очевидно, что наблюдатель ничего не заметил после разгона платформы, для него ничего не произошло, он, вообще говоря, мог и не знать, что платформа движется. Поэтому эти две величины – исходные, не сократившиеся, те, которые были известны до начала эксперимента. А что же за величины t и L? Наблюдателя, который видит движение платформы, мы считаем неподвижным. Следовательно, он видит платформу длиной L и время t, за которое фотон пролетел через платформу туда и обратно. Мы знаем, что на платформе часы стали идти медленнее, то есть время t', прошедшее на платформе, меньше времени, прошедшего в неподвижной системе отсчета t. Аналогично делаем вывод: в неподвижной системе длина платформы видится укороченной до величины L, против исходной длины L'. Однако, в соответствии с принятым постулатом о постоянстве скорости света, мы должны признать, что если путь для света изменился, то время в пути у фотона также изменилось. И изменилось оно в ту же сторону, что и длина платформы – уменьшилось, причём ровно во столько же, во сколько сократилась платформа, ведь эти три величины связаны формулой: t0 = L/с, то есть:



Подставляя (1) в (2), получаем:



Откуда после преобразований находим:



и, наконец:



Подставим значение величины k и преобразуем к привычному виду:



Таким образом, стержень, имеющий длину L' в той инерциальной системе, где он покоится, имеет длину

в той инерциальной системе, относительно которой он движется со скоростью v в продольном направлении. Подставляем (3) в (2) и находим такое же выражение для времени:



Таким образом, движущиеся часы начинают отставать, ход их замедляется в отношении

, хотя с точки зрения той инерциальной системы, которая движется вместе с часами, в часах не произошло абсолютно никаких изменений.

Здесь наблюдательный читатель заметит "противоречие", известное как "парадокс штриха". Это надуманный, формальный парадокс, так сказать, парадокс буквы, но не духа. В нашем случае мы сами выбрали обозначения времён. Как обозначать так называемое "внутреннее время ИСО", является в достаточной мере произволом.

Из уравнений (3) и (4) явно следует предельность скорости света "с" – никакая ИСО не может двигаться со скоростью v > c, поскольку в этом случае подкоренное выражение становится отрицательным. Также в рассмотренной методике вывода приведённых уравнений просматривается принцип относительности: все выкладки мы могли вести, поменяв рассматриваемые ИСО местами, и получить точно такой же результат.

Выведем из провозглашенного выше постулата (принципа) остальные следствия рассматриваемой теории. Для этого нам необходимо показать явным образом две системы отсчета К и К':



Рис.2 В неподвижной инерциальной системе отсчета К часы имеют координату x, а в подвижной инерциальной системы отсчета К' по истечении времени t – координату x'.

Конец ознакомительного фрагмента.

Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

Конец ознакомительного фрагмента
Купить и скачать всю книгу