bannerbanner
φ – Число Бога. Золотое сечение – формула мироздания
φ – Число Бога. Золотое сечение – формула мироздания

Полная версия

Настройки чтения
Размер шрифта
Высота строк
Поля
На страницу:
5 из 6

Однако главный вопрос, на который нам нужно ответить в контексте этой книги, состоит не в том, придавали ли ранние цивилизации какое-либо символическое или мистическое значение пентаграммам и правильным пятиугольникам, а в том, осознавали ли эти цивилизации особые геометрические свойства этих фигур, а в особенности – золотое сечение.

В те дни, как не был прахом Вавилон[3]

Исследования клинописных табличек, датируемых II тысячелетием до н. э. и найденных в 1936 году в Сузах в Иране, практически не оставляют сомнений, что вавилоняне времен первой династии знали формулу, позволяющую хотя бы приблизительно вычислить площадь правильного пятиугольника. Интерес вавилонян к пятиугольнику, вероятно, объяснялся тем простым фактом, что это фигура, которая получается, если прижать к глиняной табличке кончики всех пяти пальцев. На одной табличке из Суз мы читаем: «1 40, постоянная пятисторонней фигуры». Поскольку у вавилонян была принята шестидесятеричная система счисления, числа 1 40 следует толковать как 1 + 40/60, то есть площадь правильного пятиугольника со стороной 1 равна 1,666… На самом деле площадь правильного пятиугольника со стороной 1 не так уж далека от этой величины – 1,720. Вавилоняне вычислили подобное приближенное значение и для числа π – отношения длины окружности к диаметру. По сути дела, вычисление приближенного значения и числа π, и площади правильного пятиугольника опирается на одно и то же соотношение. Вавилоняне предположили, что периметр любого правильного многоугольника (фигуры с любым количеством равных сторон и равных углов) равен радиусу окружности, в которую вписан этот многоугольник, умноженному на 6 (рис. 12). На самом деле это совершенно справедливо для правильного шестиугольника (он и изображен на рис. 12), поскольку все шесть треугольников, из которых он состоит, равнобедренные. Согласно вычислениям вавилонян, число π равнялось 3 + 1/8, то есть 3,125. И правда, очень неплохое приближение, ведь значение числа π составляет 3,14159… Для правильного пятиугольника неточное предположение, что «периметр равен шести радиусам», дает приблизительное значение площади в 1,666… – то есть тот самый коэффициент, который мы видим на табличке из Суз.


Рис. 12


Рис. 13


Несмотря на эти важные ранние открытия в математике и на теснейшую связь системы пентаграммы-пятиугольника и золотого сечения, нет ни малейших математических свидетельств, что вавилоняне знали о золотом сечении. Тем не менее, в некоторых книгах и статьях утверждается, что золотое сечение будто бы наблюдается в пропорциях ассиро-вавилонских стел и барельефов. Например, в увлекательной книге Майкла Шнайдера «Конструирование Вселенной. Руководство для начинающих» (Michael Schneider. A Beginners Guide to Constructing the Universe) утверждается, что вавилонская стела (рис. 13) с изображением жрецов, которые ведут инициируемого на «встречу» с богом Солнца, «во многих отношениях связана с золотым сечением». А в статье, опубликованной в 1976 году в журнале «The Fibonacci Quarterly», искусствовед Хелен Хедиан пишет, что барельеф ассирийского крылатого полубога, созданный в IX в. до н. э. (в настоящее время он хранится в музее Метрополитен в Нью-Йорке) идеально вписывается в прямоугольник с соотношением сторон, соответствующим золотому сечению. Более того, Хедиан предполагает, что четкие контуры крыльев, ног и клюва также построены в соответствии с долями числа φ. Нечто подобное Хедиан говорит и о вавилонской «Умирающей львице» из Ниневии, которую датируют примерно 600 г. до н. э. и которая сейчас хранится в Британском музее в Лондоне.

Так можно ли сказать, что при создании всех этих артефактов из Междуречья действительно было использовано золотое сечение, или это просто научное заблуждение?

Чтобы ответить на этот вопрос, нам придется ввести какие-то критерии, которые позволят определить, истинны или ложны те или иные заявления о появлении золотого сечения. Очевидно, что присутствие золотого сечения можно доказать безо всяких сомнений лишь в том случае, если сохранилась какая-то документация, из которой следует, что художники или архитекторы сознательно прибегали к этому соотношению. К несчастью, вавилонские таблички и барельефы никакой подобной документацией не подкрепляются.

Разумеется, преданный поклонник золотого сечения возразит на это, что отсутствие доказательств не есть доказательство отсутствия, и что достаточным подтверждением применения золотого сечения могут стать параметры произведения искусства сами по себе. Однако, как мы вскоре увидим, попытки найти золотое сечение в параметрах предметов – затея, которая ни к чему хорошему не приводит. Позвольте подтвердить это простым примером. На рис. 14 приведен чертеж маленького телевизора, который стоит у меня в кухне. На чертеже указаны некоторые измерения – их я сделал сам. Легко видеть, что соотношение толщины и высоты задней части телевизора равно 10,6/6,5 дюймов, то есть 1,63, а соотношение ширины передней части и высоты экрана 14/8,75 = 1,6, то есть оба эти соотношения, несомненно, очень близки к золотому сечению – 1,618…. Означает ли это, что изготовители телевизора решили выстроить его архитектуру в соответствии с золотым сечением? Ясно, что нет. Это пример просто показывает две главные ошибки тех, кто ищет золотое сечение в архитектуре или в произведениях искусства на основании одних размеров: (1) подсчеты всегда несколько натянуты, а (2) неточность измерений не учитываются. Каждый раз, измеряя параметры какой-то относительно сложной структуры (картины, стелы, телевизора), вы получаете в свое распоряжение большой набор длин – есть из чего выбрать. И есть чем пренебречь – можно не обращать внимания на остальные детали изучаемого предмета, так что нужно лишь набраться терпения и по-всякому играть и манипулировать числами, и тогда обязательно найдется какая-нибудь интересная комбинация. Вот и я, исследуя телевизор, «открыл» некоторые измерения, отношения которых близки к золотому сечению.


Рис. 14


Второе обстоятельство, которое часто не принимают во внимание излишне рьяные любители золотого сечения, состоит в том, что я измерял все эти длины с некоторой погрешностью. Важно понимать, что любая неточность в измерении длин приводит к еще большей неточности в вычислении их отношения. Представьте себе, например, что вы измерили две длины по 10 дюймов с погрешностью в 1 %. Это значит, что результат измерения каждой длины может попасть в промежуток от 9,9 до 10,1 дюймов. Отношение этих длин может получиться даже 9,9/10,1 = 0,98, то есть погрешность окажется уже в 2 %, вдвое больше, чем при измерении каждой длины по отдельности! Таким образом, излишне страстные почитатели золотого сечения вполне могут изменить два параметра на 1 % – а это повлияет на итоговое отношение уже на 2 %.

Теперь снова рассмотрим рис. 13 с учетом этих предостережений – и окажется, в частности, что длинный вертикальный сегмент был выбран так, что в него входит и база барельефа, а не только клинописный текст. Подобным же образом и точка, до которой измеряется длинный горизонтальный сегмент, выбрана произвольно и расположена правее, а не левее края барельефа.

Пересмотрев с этой точки зрения все существующие материалы, я был вынужден сделать заключение, что открытие вавилонянами золотого сечения крайне маловероятно.

По всей египетской земле[4]

Что же касается древних египтян, тут ситуация несколько сложнее и требует основательного детективного расследования. Здесь мы сталкиваемся с огромным количеством текстов, где утверждается, что число φ встречается, например, в пропорциях великих пирамид и других древнеегипетских монументов; казалось бы, возразить против таких доказательств нечего.

Однако позвольте начать с двух самых простых случаев – Осириона и гробницы Петосириса. Осирион – это храм, который считают кенотафом фараона Сети I, правившего Египтом в период XIX династии (ок. 1500 г. – ок. г. 1290 до н. э.). Храм обнаружил в 1901 году известный археолог сэр Флиндерс Петри, масштабные раскопки завершились в 1927 году. Сам храм, судя по архитектурной символике, служит иллюстрацией к мифу об Осирисе. Осирис, супруг Изиды, когда-то был египетским фараоном. Его брат Сет убил его, расчленил тело и разбросал куски. Изида собрала их и возродила Осириса к жизни. Впоследствии Осирис стал царем подземного мира и богом циклических превращений – жизни, смерти и возрождения – и на личном, и на вселенском уровне. В период Среднего царства (2000–1786 гг. до н. э.) культ мертвых был развит еще больше, и Осирис стал судьей, определяющим судьбу души после смерти.


Рис. 15, а / Рис. 15, б


Храм Осирион был целиком засыпан землей и напоминал, таким образом, могилу. На плане Осириона (рис. 15, а) видна центральная часть с десятью квадратными колоннами; видимо, она была окружена рвом, наполненным водой. Считается, что такая структура символизирует сотворение первобытных вод.

В небезынтересной книге Роберта Лоулора «Священная геометрия. Философия и практика» (Robert Lawlor. Sacred Geometry: Philosophy and Practice, 1982) высказано предположение, что геометрия Осириона «соответствует пропорциям золотого сечения», поскольку «золотое сечение – это трансцендентная “форма-идея”, которая, несомненно, существовала априори, в вечности, до того, как в пространстве и времени возникли и развились любые прогрессии». В подтверждение своего предположения о повсеместном присутствии числа φ, золотого сечения, в архитектуре храма Лоулор предлагает подробнейший геометрический анализ, образчик которого представлен на рис. 15, б. Более того, автор утверждает, что «подчеркивание мотива правильного прямоугольника служит ярким символом представления о том, что после смерти фараон превратился в звезду».

Несмотря на то что геометрический анализ Лоулора отличается красотой и зрелищностью, мне он кажется неубедительным. Мало того, что линии, которые, как предполагается, отражают золотое сечение, проводятся, похоже, в совершенно произвольных местах, но и видеть правильные пятиугольники там, где ясно читается прямоугольник, это, сдается мне, некоторая натяжка. То, что сам Лоулор предлагает и другие интерпретации геометрии храма, где опять же то и дело возникает φ в соотношениях самых разных измерений, лишь подтверждает, что подобное вчитывание – в сущности, произвол и спекуляция и что при желании золотое сечение можно увидеть и там, где его нет.

Положение дел с гробницей Петосириса, которую раскопал в начале 1920 годов археолог Гюстав Лефевр, примерно такое же. Гробница гораздо моложе Осириона, она датируется лишь примерно 500 г. до н. э. и построена для верховного жреца бога Тота. Поскольку гробница датируется периодом, когда золотое сечение уже было известно (грекам), оно в принципе могло проявиться в геометрии гробницы. Более того, Лоулор в той же «Священной геометрии» приходит к выводу, что «Жрец Петосирис обладал полным и крайне глубоким представлением о золотом сечении». Этот вывод основан на анализе геометрии раскрашенного барельефа с восточной стены священной части гробницы (рис. 16, а). На барельефе изображен жрец, совершающий возлияние на голову мумии усопшего.


Рис. 16, а / Рис. 16, б


К сожалению, геометрический анализ, который предлагает Лоулор, представляется несколько надуманным (рис. 16, б): линии проведены из произвольно выбранных точек, которые никак нельзя назвать узловыми. Более того, и отношения, которые в результате получаются, слишком громоздки (например, (2√(1–φ2))/φ2) и потому неправдоподобны. Поэтому лично мне представляется, что хотя представление Лоулора о том, что «погребальные практики в традиции фараонов были призваны не только воздать дань уважения физическому телу покойного, но и создать вместилище метафизических знаний, которые он накопил при жизни», исключительно верно, но все же, в сокровищницу метафизических знаний Петосириса золотое сечение не входило.

Следует подчеркнуть, что доказать, что золотое сечение не встречается в египетских археологических памятниках, когда об этом свидетельствуют только геометрические параметры, практически невозможно. Однако никаких документов, которые подтверждают, что египтяне сознательно применяли золотое сечение, до нас не дошло, а без них золотое сечение в произведениях искусства или в архитектуре должно прямо-таки бросаться в глаза, а не прятаться так глубоко, что для его выявления требуется очень сложный анализ. Как мы еще увидим, подробный разбор нескольких более поздних случаев, когда некоторые исследователи также полагали, что художники применяли золотое сечение, показывает, что эти предположения столь же необоснованны.

Однако я, пожалуй, не стану разбирать другие относительно малоизвестные объекты, например, египетскую стелу, датируемую примерно 2150 годом до н. э., размеры которой, как полагают некоторые ученые, также относятся как золотое сечение, а перейду сразу к кульминации – к великой пирамиде Хеопса.

Пирамида чисел

По традиции, правителем Верхнего Египта, который завоевал мятежное царство Нижнего Египта (в дельте Нила) и тем самым объединил Египет около 3110 г. до н. э., был Менес (или Нармер). В правление III династии (ок. 2780–2680 гг. до н. э.) был введен культ Солнца в качестве главной религии, а также вошли в обиход мумифицирование умерших и строительство крупных каменных монументов. Эпоха великих пирамид достигла расцвета при IV династии, около 2500 г. до н. э. – и ее высочайшим достижением стали три знаменитые пирамиды в Гизе (рис. 17). «Великая пирамида» (на фотографии она на заднем плане) служит не только памятником фараону, но и символом успеха организации древнеегипетского общества в целом. Ученый Курт Мендельсон в своей книге «Загадка пирамид» (Kurt Mendelssohn. The Riddle of the Pyramids, 1974) пришел к заключению, что целью всего сооружения пирамид было в большой степени не применение их по назначению, то есть в качестве надгробных сооружений, но их возведение само по себе. Иначе говоря, главным были не сами пирамиды, а их строительство. Это объясняет очевидное несоответствие между колоссальным вложением сил в то, чтобы нагромоздить около 20 миллионов тонн добытого в каменоломнях песчаника, и единственным предназначением пирамид – похоронить трех фараонов.

В 1996 году египтолог-любитель Стюарт Киркленд Вьер, работавший под эгидой Денверского музея естествознания, подсчитал, что на строительстве великой пирамиды в Гизе должны были трудиться примерно 10 000 рабочих. Оценка количества энергии, необходимой, чтобы доставить каменные блоки из каменоломни к месту строительства, а также поднять камни на требуемую высоту, позволила Вьеру прикинуть необходимое количество работы. Предположив, что строительство заняло двадцать три года (продолжительность царствования фараона Хеопса), и сделав несколько разумных допущений – сколько энергии мог потратить египетский рабочий в день и как выглядел распорядок рабочего дня, – Вьер сумел оценить количество потребовавшейся рабочей силы.


Рис. 17


До самого недавнего времени датировка пирамид в Гизе опиралась в основном на сохранившиеся перечни фараонов и продолжительность их царствования. Поскольку такие списки редки, почти никогда не бывают полными и, как известно, противоречивы, хронология, как правило, составляется с точностью примерно до ста лет. (Такая же погрешность у датировки методом радиоуглеродного анализа). В ноябре 2000 года в журнале «Nature» была опубликована статья, в которой Кейт Спенс (Kate Spence) из Кембриджского университета предлагает иной метод датировки, согласно которому великая пирамида Хеопса была выстроена в 2480 году до н. э. (с погрешностью всего в пять лет). Метод Спенс – тот самый метод, который первым предложил астроном сэр Джон Гершель в середине XIX века, а основан он на том, что пирамиды всегда ставили с очень точной ориентацией на север. В частности, пирамида Хеопса ориентирована на север с погрешностью меньше чем 3 угловые минуты (всего 5 % градуса!) Несомненно, что египтяне определяли север с такой точностью благодаря астрономическим наблюдениям.

Северный полюс небесной сферы определяется как точка в небе, соответствующая оси вращения Земли – та точка, вокруг которой, как видится глазу, вращаются звезды. Однако сама по себе ось Земли не закреплена в пространстве, она медленно вращается, примерно как ось вращающегося волчка или гироскопа. В результате этого движения – оно называется прецессией – северный полюс небесной сферы каждые 26 000 лет описывает на северном небе большой круг. В наши дни северный полюс небесной сферы определяется с погрешностью в 1 градус по положению Полярной звезды (астрономы называют ее Альфой Малой Медведицы), однако во времена строительства великих пирамид дело обстояло иначе. Спенс предположила, по каким двум звездам древние египтяне находили север – это Дзета Большой Медведицы и Альфа Малой Медведицы, – а затем тщательно изучила ориентацию восьми пирамид и сумела определить дату возведения пирамиды Хеопса: 2480 год до н. э., то есть примерно на 74 года позднее, чем полагали раньше.

Мало какие археологические сооружения окутаны такой плотной завесой легенд и противоречий, как пирамида Хеопса. Например, пристальное внимание к пирамидам и к оккультной стороне их изучения было центральной темой учения розенкрейцеров (его основал Христиан Розенкрейц в 1459 г.). Члены этой секты претендовали на весьма глубокое знание тайн природы, магических знаков и знамений и т. п. Из отдельных ответвлений культа розенкрейцеров берет начало масонство. Ближе к нашему времени интерес к науке о пирамидах вспыхнул снова – возможно, благодаря вышедшей в 1859 году книге ушедшего на покой английского издателя Джона Тейлора «Великая пирамида. Кто и зачем ее построил?» (John Taylor. The Great Pyramid: Why Was It Built and Who Built It?), проникнутой религиозным духом. Тейлор был настолько убежден, что пирамида до мельчайших деталей построена по математическим формулам, о которых древние египтяне и не подозревали, что сделал вывод, будто это сооружение – результат божественного вмешательства. Находясь под влиянием модного в те годы представления, что англичане будто бы потомки потерянных колен Израилевых, Тейлор, в частности, предположил, что основной единицей измерения при строительстве пирамид был библейский «локоть» (чуть больше 25 английских дюймов и в точности 25 «пирамидальных дюймов»). Предполагается, что именно на эту меру длины опирался Ной при строительстве Ковчега и царь Соломон при строительстве Храма. Тейлор пошел дальше и заявил, что этот священный локоть был дарован свыше, поскольку основан на длине радиуса Земли – расстояния от центра до полюса: «пирамидальный дюйм» якобы равен одной пятисотмиллионной доле полярной оси Земли. Эта книга, совершенно безумная, обрела горячего сторонника в лице Чарльза Пиацци Смита, королевского астронома Шотландии (то есть директора Королевской обсерватории Эдинбурга), который в 1860-е годы опубликовал ни много ни мало три объемистых тома о великой пирамиде, первый из которых назывался «Великая пирамида как наше наследие» (Charles Piazzi Smyth. Our Inheritance in the Great Pyramid). Энтузиазм Пиацци Смита был вызван отчасти тем обстоятельством, что он был ярым противником введения в Великобритании метрической системы. Его псевдонаучная или теологическая логика была примерно такова: великая пирамида Хеопса рассчитана в дюймах, математические свойства пирамиды показывают, что ее строительство вдохновлялось свыше, следовательно, дюйм – величина богоданная, не то что сантиметр, порождение «самой дикой, самой кровожадной, самой безбожной революции» (Великой Французской, разумеется). Далее Пиацци Смит излагает свою точку зрения на диспут о системе мер и пишет, в частности, в книге «Великая пирамида, ее секреты и раскрытые тайны» («The Great Pyramid, Its Secrets and Mysteries Revealed»):

А значит, те билли, которые предлагали в Парламенте профранцузски настроенные агитаторы за метрическую систему, столь часто не проходили не благодаря усилиям отдельных защитников британских мер и весов, а скорее из-за того, что эта весьма пронырливая система греховна сама по себе, и наша задача – уберечь избранный народ, сохранившийся, несмотря на все исторические коллизии, не допустить, чтобы этот народ по недомыслию облачился в отравленные одежды, в те самые, в каких явится антихрист, и, словно Исав за чечевичную похлебку, за жалкую сиюминутную выгоду в торговле отказался от установления, принадлежащего ему по праву рождения, от установления, которое наши авраамические предки так стремились сохранить до той поры, когда таинства Господни затронут, наконец, все человечество.

Прочитав этот текст, мы уже не станем удивляться, когда узнаем, что писатель Леонард Коттрел решил назвать главу о Чарльзе Пиацци Смите в своей книге «Горы фараоновы» (Leonard Cottrell. The Mountains of Pharaoh) «Великий пирамидиот».

И Пиацци Смит, и Тейлор своим нумерологическим анализом параметров пирамид, в сущности, поспособствовали возрождению пифагорейской одержимости числом 5. Они отметили, что у пирамиды (что очевидно) пять вершин и пять граней, если считать основание, что «священный локоть» содержит примерно 25 (5 в квадрате) дюймов (или ровно 25 «пирамидальных дюймов»), что «пирамидальный дюйм» составляет одну пятисотмиллионную земной оси и т. д. Писатель и популяризатор науки Мартин Гарднер обнаружил прелестный пример, демонстрирующий нелепость «пятерочного» анализа Пиацци Смита. В своей книге «Чудачества и заблуждения во имя науки» (Martin Gardner. Fads and Fallacies in the Name of Science, 1957) Гарднер пишет:

Если заглянуть в «World Almanac» и выяснить некоторые факты, касающиеся монумента Вашингтона, можно найти довольно много «пятерочностей». Высота его составляет 555 футов 5 дюймов. Основание – квадрат со стороной 55 футов, а окна расположены на высоте в 500 футов от основания. Если умножить основание на 60 (а это число месяцев в году, умноженное на 5), получим 3300 – а это точный вес его замкового камня в фунтах. К тому же в слове «Washington» ровно десять букв – то есть дважды пять. А если умножить вес замкового камня на площадь основания, получится 181 500 – достаточно точное приближение к скорости света в милях в секунду.

Однако настала пора сделать самое скандальное заявление о великой пирамиде Хеопса с точки зрения нашего интереса к золотому сечению. В той же книге Гарднер упоминает одно утверждение, которое, если оно истинно, доказывает, что золотое сечение и вправду использовалось при проектировании великой пирамиды. Гарднер пишет: «Геродот утверждает, что пирамиду построили с таким расчетом, чтобы площадь каждой грани равнялась площади квадрата, сторона которого равна высоте пирамиды». Греческого историка Геродота (ок. 485–425 гг. до н. э.), великий римский оратор Цицерон (106–43 гг. до н. э.) назвал «отцом истории». Гарднер не понимал, что, в сущности, следует из утверждения Геродота, однако был не первым и не последним, кто его приводит.

Знаменитый английский астроном сэр Джон (Фредерик Уильям) Гершель (1792–1871) в статье под названием «Британский модульный стандарт длины» («British Modular Standard of Length»), опубликованной в «The Athenaeum» 28 апреля 1860 года, пишет:

Такой же уклон… принадлежит пирамиде, характеризуемой таким свойством, что каждая из ее граней равна квадрату со стороной, равной высоте пирамиды. Это характерное соотношение, которое, как ясно и очевидно говорит нам Геродот, умышленно придали пирамиде ее строители – и теперь нам известно, что оно ей действительно придано.

А уже совсем недавно, в 1999 году, французский писатель и специалист по телекоммуникациям Мидхат Газале написал в своей интересной книге «Гномон. От фараонов до фракталов»: «Говорили, что греческий историк Геродот узнал у египетских жрецов, что квадрат высоты великой пирамиды равен площади ее треугольной боковой стороны». Почему это утверждение так важно? По той простой причине, что это все равно что сказать, что великая пирамида была создана так, чтобы отношение высоты ее треугольной стороны к половине стороны основания было равно золотому сечению![5]


Рис. 18


Не пожалейте минуты и внимательно посмотрите на чертеж пирамиды на рис. 18, где а – половина стороны основания, s – высота треугольной стороны, а h – высота самой пирамиды. Если утверждение, которое приписывают Геродоту, верно, это будет означать, что h2 (квадрат высоты пирамиды) равен s × а (площади треугольной стороны, см. Приложение 3). Элементарные геометрические выкладки показывают, что это равенство означает, что соотношение s/a в точности равно золотому сечению (доказательство см. в Приложении 3). Естественно, на ум сразу же приходит вопрос, так ли это. Основание великой пирамиды Хеопса на самом деле не совсем правильный квадрат, длины его сторон разнятся от 755,43 футов до 756,08 футов. Средняя длина стороны, 2а, равна, таким образом, 755,79 футов. Высота пирамиды h = 481,4 фута. Применив теорему Пифагора, мы находим, исходя из этих величин, что высота треугольной стороны s равна 612,01 футов. Итак, мы нашли, что отношение s/a = 612,01/377,90 = 1,62, что и в самом деле очень близко к золотому сечению (погрешность составляет меньше 0,1 %).

На страницу:
5 из 6