Полная версия
φ – Число Бога. Золотое сечение – формула мироздания
Если подробнее рассмотреть примеры из мира природы и из мира искусства, окажется, что они заставляют задаваться вопросами на трех уровнях глубины. Прежде всего, это непосредственные вопросы: (а) все ли случаи появления числа φ в природе и искусстве, описанные в литературе, действительно имеют место или некоторые из них – всего лишь результаты неверных интерпретаций и всякого рода натяжек? (б) Если число φ и правда появляется в этих и других обстоятельствах, можем ли мы как-то это объяснить? Далее, если учесть, что мы придерживаемся определения «красоты», подобного, скажем, тому, которое дано в словаре Уэбстера: «Качество, которое делает объект приятным или приносит определенное удовлетворение» – возникает вопрос: есть ли у математики эстетическая составляющая? Если да, какова сущность этой составляющей? Это серьезный вопрос, поскольку, как заметил однажды американский архитектор, математик и инженер Ричард Бакминстер Фуллер (l895–l983): «Когда я работаю над какой-то задачей, то никогда не думаю о красоте. Думаю я только о том, как решить эту задачу. Но если я решу ее и решение окажется некрасивым, я буду знать, что ошибся». И, наконец, самый интересный вопрос звучит так: почему, собственно, математика столь могущественна и столь вездесуща? Благодаря чему математика и численные константы вроде золотого сечения играют столь важную роль во всем на свете – от фундаментальных теорий происхождения Вселенной до рынка ценных бумаг? Существует ли математика и ее принципы независимо от людей, которые ее открыли или обнаружили? Математична ли Вселенная по своей природе? Последний вопрос можно задать, переформулировав известный афоризм английского физика сэра Джеймса Джинса (1847–1946): может быть, и сам Бог – математик?
В этой книге я постараюсь обсудить все эти вопросы более или менее подробно с точки зрения увлекательной истории числа φ. История этой константы, временами запутанная, насчитывает тысячелетия и разворачивается на всех материках. Но при этом я надеюсь рассказать вам еще и интересную историю о человеческой психологии. Наш сюжет отчасти повествует о тех временах, когда физиками и математиками называли себя люди, которых попросту интересовали различные вопросы, разжигавшие в них любознательность. Зачастую подобные люди трудились и умирали, не зная, удастся ли результатам их трудов изменить ход научной мысли или они просто канут в Лету, не оставив и следа.
Однако прежде чем пуститься в этот путь, нам придется поближе познакомиться с числами вообще и с золотым сечением в частности. Откуда, в сущности, появилась сама идея золотого сечения? Что именно заставило Евклида задуматься о том, чтобы разделить отрезок именно в таком соотношении? Моя цель – помочь вам заглянуть в подлинные истоки, так сказать, «золотого исчисления». Для этого мы и предпримем краткую ознакомительную экскурсию во времена зарождения математики.
Гаммы и пентаграммы
В той мере, в какой математические законы относятся к реальности, они не слишком точны, а там, где они точны, они не относятся к реальности.
Альберт Эйнштейн (1879–1955)Мне видится во Вселенной определенный порядок, и единственный способ сделать его зримым – это математика.
Мэй Сартон (1912–1995)Когда именно человек начал считать – то есть измерять множество количественным способом – никто не знает. По сути дела, мы даже не знаем, что было раньше – количественные числительные (один, два, три) или порядковые (первый, второй, третий). Количественные числительные показывают просто множественность набора предметов – например, количество учеников в классе. А порядковые числительные, напротив, показывают порядок, последовательность конкретных элементов группы, например, дату – число в месяце – или номер места в определенном ряду в концертном зале. Изначально считалось, что счет возник именно для того, чтобы решать какие-то мелкие повседневные задачи, а из этого, конечно, следует, что первыми возникли количественные числительные. Однако некоторые антропологи полагают, что изначально числа возникли на исторической сцене в рамках каких-то ритуалов, во время которых те или иные действующие лица должны были появляться в определенном порядке, последовательно. Если это так, то, согласно этой концепции, понятие о порядковых числительных появилось раньше, чем о количественных.
Очевидно, чтобы перейти от простого пересчета предметов к подлинному осознанию чисел как абстрактных понятий, потребовался куда более значительный интеллектуальный скачок. Таким образом, поначалу число, вероятно, относилось в основном к контрасту, противопоставлению, причем в ситуациях, имеющих отношение, вероятно, к жизни и смерти (сколько там волков – один или целая стая?), а подлинное понимание того, что две руки и два дня – это выражения одного и того же числа «два», вероятно, пришло лишь спустя многие столетия. Для этого нужно было пройти этап распознавания не только контрастов, но и общих черт, соответствий. Во многих языках сохранились явные следы того, что первоначально простой акт подсчета количества не соотносился с абстрактными представлениями о числе. Например, на островах Фиджи десять кокосовых орехов называются «коро», а десять лодок – «боло». Подобным же образом у народности тауаде, живущей в Новой Гвинее, пары мужского пола, женского пола и смешанные обозначаются разными словами. Да и мы с вами зачастую обозначаем множества различных предметов разными словами: например, мы говорим «табун лошадей», но никогда не скажем «табун собак».
Конечно, абстрактному пониманию числа «два» во многом поспособствовал тот факт, что у людей столько же рук, сколько ног, глаз и грудей. Но и здесь, скорее всего, ушло довольно много времени, чтобы научиться ассоциировать это число с предметами неодинаковыми – например, с двумя основными светилами, солнцем и луной. Нет никаких сомнений, что первоначально люди научились различать один и два, а затем – два и «много». Этот вывод делается на основании результатов исследований, проведенных в XIX веке среди племен, относительно незнакомых с европейской цивилизацией, а также лингвистических различий в терминах, обозначающих различные числа и в древних, и в современных языках.
Три – это уже много
Первые свидетельства того, что числа больше двух когда-то объединялись в понятие «много», мы находим в истории пятитысячелетней давности. В шумерском языке, на котором говорили в Междуречье, числительное «три» – «эш» – служило также обозначением множественности как таковой (как суффикс -s в английском языке). Подобным же образом этнографические исследования населения островов Торресова пролива между Австралией и Папуа – Новой Гвинеей, проведенные в 1890 году, показали, что местные жители пользовались так называемой «системой счета через “два”». Слово «урапун» означало у них «один», «окоса» – «два», а дальше шли различные их сочетания: «окоса-урапун» – «три», «окоса-окоса» – четыре. Для чисел больше четырех островитяне применяли слово «рас» – «много». Почти такие же системы номенклатуры обнаружены и у других туземных племен от Бразилии (ботокудо) до Южной Африки (зулусы). Например, австралийское племя аранда словом «нинта» называло «один», «тара» – «два», а дальше шли «тара-ми-нинта» – «три», «тара-ма-тара» – «четыре», а все остальные числа назывались просто «много». Среди этих племен был также распространен обычай считать предметы не по отдельности, а парами.
Возникает интересный вопрос: почему языки, где приняты подобные системы счета, доходят именно до «четырех» и затем останавливаются (несмотря на то, что они уже выражают «три» и «четыре» через «один» и «два»)? Одно из объяснений состоит в том, что на руках у нас по четыре пальца, находящихся в похожем положении. Другое, более тонкое объяснение гласит, что ответ таится в физиологической ограниченности визуального восприятия человека. Согласно нескольким исследованиям, мы способны охватить одним взглядом – без подсчета – самое большее четыре-пять предметов. Может быть, вы помните, что в фильме «Человек дождя» Дастин Хоффман играет аутиста с необычайно развитой наблюдательностью и памятью на числа (на самом деле подобные способности в реальной жизни встречаются лишь в единичных случаях). В одном эпизоде по полу рассыпаются все зубочистки из коробочки, кроме четырех, и герой Хоффмана с первого взгляда подсчитывает, что на полу их 246. Конечно, рядовому человеку такой фокус не по силам. Это подтвердит всякий, кто когда-либо подсчитывал результаты голосования вручную. Обычный прием при этом – отмечать голоса пятерками, причем первые четыре обозначаются прямыми черточками, а пятый – черточкой поперек первых. Это придумали именно потому, что человеку трудно одним взглядом охватить больше четырех черточек. Подобную систему изобрели в английских пабах, где бармену приходилось подсчитывать количество кружек пива, и там она называется «ворота из пяти перекладин». Любопытно, что эксперимент, описанный историком математики Тобиасом Данцигом (1884–1956) в 1930 году в чудесной книге «Число, язык науки» (Tobias Dantzig, «Number, the Language of Science») показывает, что распознавать и различать до четырех предметов способны также некоторые птицы. Вот что рассказывает Данциг:
Один помещик решил пристрелить ворону, которая свила гнездо на смотровой башне его поместья. Он несколько раз пытался застать птицу врасплох, но безуспешно: при приближении человека ворона улетала из гнезда. А затем устраивалась на дереве вдали и выжидала, когда человек покинет башню, после чего возвращалась в гнездо. Однажды помещик придумал уловку: два человека вошли в башню, один остался внутри, а другой вышел наружу и удалился. Однако обмануть птицу не удалось: она держалась в отдалении, пока не вышел тот, кто оставался в башне. В последующие дни опыт повторили с участием двух, трех, а потом и четырех человек – но безуспешно. Наконец были отправлены пять человек; как и прежде, в башню вошли все, один остался внутри, а остальные вышли и удалились. Тут-то ворона и сбилась со счета. Она не смогла отличить пять от четырех и быстро вернулась в гнездо.
Есть много и других свидетельств в пользу гипотезы, что первоначальные системы счета создавались согласно концепции «один, два, много». Это следует из лингвистических различий в образовании множественного числа и дробей. Скажем, в иврите есть особая форма множественного числа для пар одинаковых предметов (например, рук и ног) и особые слова для предметов, у которых есть две одинаковые части (то есть для брюк, очков, ножниц), отличающиеся от обычного множественного числа. Обычно существительные во множественном числе оканчиваются на «им» в мужском роде и на «от» в женском, однако множественное число для глаз, грудей и т. п. и для предметов, у которых есть две одинаковые части, кончается на «аим». Подобные формы есть и в финском и когда-то, в Средние века, были в чешском. Но главное не это: переход к дробям, который, конечно, требует более основательного знакомства с числами, характеризуется явными лингвистическими отличиями в названиях всех дробей, кроме половины. В индоевропейских языках и даже в некоторых неиндоевропейских, например, в иврите и венгерском, названия трети, пятой части и т. д. в целом образуются от соответствующих числительных – три, пять и т. д. Например, «три» на иврите – «шалош», а «одна треть» – «шлиш». По-венгерски «три» – «харом», а «одна треть» – «хармад». А вот слово «половина» и в этих языках никак не связана с числительным «два». Скажем, по-румынски «два» – «дой», а «половина» – «юмате», на иврите «два» – «штаим», а «половина» – «хеци», по-венгерски «два» – «кеттё», а «половина» – «фел». Из этого можно сделать вывод, что хотя человечество довольно рано поняло, что такое 1/2 как число, однако представление о том, что другие дроби как-то связаны с целыми числами («одна какая-то»), вероятно, возникло лишь после того, как был перейден барьер «три – это уже много».
Как подсчитать бесчисленные пальцы
Еще до того как системы счета оказались в полной мере развиты, человеку надо было иметь возможность как-то записывать определенные количества предметов. Древнейшие археологические находки, которые, как полагают, так или иначе связаны со счетом, – это кости с нанесенными через равные интервалы насечками. Самая древняя находка, датируемая примерно 35 000 лет до н. э., – бедренная кость бабуина, обнаруженная в пещере в горах Лебомбо в Африке. На этой кости нанесено двадцать девять насечек. Другая подобная «бухгалтерская» находка – волчья кость с пятьюдесятью пятью насечками (объединенными в две группы – двадцать пять и тридцать, – причем первая разбита еще и на подгруппы по пять), – обнаружена археологом Карелом Абсолоном в 1937 году на стоянке в Долне Вестонице в Чехословакии; ее относят к ориньякской культуре (около 30 000 лет назад). Группировка насечек по пять в особенности говорит в пользу концепции основания системы счисления, о чем я еще упомяну. Точное предназначение этих насечек нам неизвестно, однако, возможно, это учет охотничьей добычи. Группировка, вероятно, помогала охотнику вести счет, не подсчитывая каждый раз все насечки. Подобные размеченные кости были найдены и во Франции, и в пещере Пекарна в Чехии – они относятся к мадленской культуре (около 15 000 лет назад).
Большой интерес ученых вызвала так называемая кость Ишанго, обнаруженная в 1950 году археологом Жаном де Хайнзелином де Брокуром на стоянке Ишанго близ границы между Угандой и Заиром (рис. 6). Это костяная рукоять какого-то орудия, датируемая примерно 9000 г. до н. э., с тремя рядами насечек, организованных в следующие группы: (i) 9, 19, 21, 11; (ii) 19, 17, 13, 11; (iii) 7, 5, 5, 10, 8, 4, 6, 3. Сумма чисел в первых двух рядах – по 60 в каждом, что натолкнуло некоторых ученых на мысль, что они, вероятно, отражают запись фаз Луны в двух лунных месяцах (если предположить, что некоторые насечки из третьего ряда, где сумма составляет всего 48, стерлись). Были предложены и другие, более хитроумные и куда менее правдоподобные толкования. Например, де Хайнзелин, исходя из того, что второй ряд состоит из простых чисел, следующих подряд (то есть чисел, которые делятся только на 1 и сами на себя), а первый ряд – из чисел, которые на единицу отличаются от 10 или 20, предположил, что у жителей Ишанго были какие-то рудиментарные познания в арифметике и что они даже знали о простых числах. Нет нужды говорить, что многим исследователям подобная интерпретация кажется несколько смелой.
Рис. 6
Другую интересную систему записи чисел подарил нам Ближний Восток; она восходит к периоду от девятого до второго тысячелетия до н. э. В самых разных местах, от Анатолии на севере до Судана на юге, археологи находили множество маленьких, похожих на игрушки глиняных предметов разной формы. Это были диски, цилиндры, конусы, пирамидки, зверюшки и т. п. Археолог Дениза Шмандт-Бессера из Техасского университета в Остине изучала эти предметы в конце 1970 годов и выдвинула интереснейшую теорию: она убеждена, что эти глиняные предметы служили при торговле жетонами-пиктограммами и символизировали разные типы подсчитываемых предметов. Скажем, глиняный шарик, вероятно, обозначал какое-то количество зерна, один цилиндр – одну голову скота и т. д. Таким образом, доисторические ближневосточные торговцы могли, согласно гипотезе Шмандт-Бессера, вести учет своего бизнеса, выкладывая в ряды жетоны, соответствующие разным типам товаров, участвующих в торговле.
Какими бы символами ни передавали различные числа – насечками на кости, глиняными фигурками, узелками на бечевке (этой системой пользовались инки, она называлась «кипу») или просто на пальцах, – в какой-то момент в истории человечеству пришлось решать задачу, как передавать большие числа и манипулировать ими. Символические системы, у которых для каждого числа было свое название или свой обозначающий предмет, были обречены на вымирание по сугубо практическим причинам. Нужно было разработать и принять минимальный набор символов, при помощи которых можно было охарактеризовать любое число – точно так же, как буквы в алфавите в некотором смысле можно назвать минимальным набором символов, при помощи которых можно выразить весь наш лексикон, все письменные знания. Эта необходимость подвела нас к концепции основания системы счисления – идее, что числа можно организовывать иерархически, в соответствии с определенными порядками. Наша система счисления основана на 10, и мы в повседневной жизни настолько к этому привыкли, что нам трудно представить себе, как можно выбрать другое основание.
Почему у нас именно десятичная система счисления, объясняется довольно просто – что вовсе не означает, что на ее развитие не понадобилось много времени. Мы группируем состав числа таким образом, что десять единиц на каждом иерархическом уровне составляют одну единицу уровнем выше. То есть 10 раз по единице – это 1 десяток, 10 десятков составляют 1 сотню, 10 сотен – 1 тысячу и т. д. Собственно имена числительные и расположение цифр также отражают иерархическую группировку. Когда мы записываем, например, число 555, то повторяем одну и ту же цифру три раза, однако каждый раз ее значение меняется. Первая цифра справа обозначает 5 единиц, вторая – 5 десятков или 5 раз по 10, третья – 5 сотен, то есть 5 раз по 10 десятков (или 5×102). Это важнейшее правило позиции, позиционную нумерацию, придумали вавилоняне (их система счисления имела основание 60, то есть была шестидесятеричной, о чем мы поговорим чуть дальше) примерно во втором тысячелетии до н. э., а затем в течение примерно 2500 лет ее независимо открыли китайцы, майя в Центральной Америке и индийцы.
Из всех индоевропейских языков самые ранние дошедшие до нас тексты написаны на санскрите – языке, зародившемся на севере Индии. В частности, четыре древних священных писания индуизма, в названии которых есть санскритское слово «веда» – «знание» – датируются V в. до н. э. Все числа от 1 до 10 на санскрите называются разными, неродственными словами: эка, два, три, чатвар, панча, шаш, сапта, ашта, нава, даша. Все числа от 11 до 19 представляют собой просто сочетание количества единиц и слова «десять». То есть 15 – это «панча-даша», 19 – «нава-даша» и т. д. Подобные числительные имеются, скажем, в английском, где все числа от 13 до 19 кончаются на -teen. Если вам вдруг станет интересно, откуда в английском языке взялись «eleven» и «twelve» («одиннадцать» и «двенадцать»), поясню: «eleven» произошло от «an» («один») и «lif» («осталось» или «остаток», то есть «один остался»), а «twelve» – от «two» («два») и «lif» (то есть «два осталось»). То есть эти числительные означают, что после десяти осталось еще один или два. Названия десятков в английском и санскрите также образуются одинаково – при помощи числа и слова «десять» во множественном числе («twenty», «thirty» и пр.): скажем, 60 на санскрите – «шашти»; более того, все индоевропейские языки образуют числительные очень похожими способами. Так что все, кто говорит на этих языках, очевидно, усвоили одну и ту же систему счисления – десятичную.
Почти не приходится сомневаться, что практически всемирная популярность десятичной системы счисления объясняется всего-навсего тем обстоятельством, что у нас десять пальцев – так уж захотела природа. Гипотезу эту впервые выдвинул греческий философ Аристотель (384–322 до н. э.), когда в своем сочинении «Проблемы» задался вопросом: «Почему все люди, и варвары, и греки, считают до десяти, а не до какого-нибудь другого числа?» На самом деле основание 10 ничем не лучше, скажем, основания 13. Можно даже теоретически поспорить, что раз 13 – простое число, то есть делится только само на себя и на единицу, в качестве основания системы счисления оно даже удачнее 10, поскольку в такой системе счисления большинство дробей окажутся несократимыми. Например, в десятичной системе счисления число 36/100 можно записать также как 18/50 или 9/25, в системе счисления вроде тринадцатеричной подобная неоднозначность записи исключена. Однако десятичная система одержала верх, потому что у каждого человека перед глазами было десять пальцев, и пользоваться ими было просто. В некоторых малайско-полинезийских языках слово «ладонь» – «лима» – означает и «пять». Означает ли это, что десятичную систему счисления приняли все известные цивилизации? Нет.
Среди прочих оснований систем счисления, которые применяли некоторые народы по всему миру, самым популярным оказалось 20 (двадцатеричная система счисления). В этой системе, которая когда-то была распространена на больших территориях Западной Европы, разряды формируются не на основе 10, а на основе 20. Очевидно, что для расширения базы к пальцам на руках присовокупили и пальцы на ногах. Например, у эскимосов «двадцать» обозначается выражением «теперь человек цельный». Во многих современных языках следы двадцатеричной системы счисления еще сохраняются. Например, по-французски «восемьдесят» будет «quatre-vingts» («четыре двадцатки») и когда-то существовала и архаическая форма «six-vingts» («шесть двадцаток»). А еще более яркий пример – название больницы в Париже, основанной в XIII веке: она до сих пор называется «L’Ôpital de Quinze-Vingts» – «Больница пятнадцати двадцаток» – поскольку первоначально была рассчитана на 300 коек для слепых ветеранов. Подобным же образом по-ирландски «сорок» – «daichead» от «da fiche» («дважды двадцать»), по-датски слова «шестьдесят» и «восемьдесят» («tresindstyve» и «firsindstyve» соответственно, сокращенно «tres» и «firs») буквально означают «три двадцатки» и «четыре двадцатки».
Однако самая удивительная система счисления в древности, а может быть, и за всю историю человечества – это шестидесятеричная система. Этой системой пользовались шумеры, жители Междуречья, и хотя корнями она восходит к четвертому тысячелетию до н. э., следы ее заметны и в наши дни: мы измеряем время в часах, минутах и секундах и делим окружность на 360 градусов (60 × 6), а каждый градус подразделяем на минуты и секунды. Шестьдесят как основание системы счисления требует отличной памяти, поскольку подобная система, в принципе, предполагает индивидуальные названия и символы для всех чисел от 1 до 60. Шумеры понимали, что это трудно, и прибегли к некоторой уловке, чтобы числа было легче запоминать: ввели 10 как промежуточную ступень. Введение 10 позволило им ограничиться отдельными словами только для чисел от 1 до 10, а десятки от 10 до 60 передавались словосочетаниями. Скажем, шумерское слово «сорок» – «нимин» – это сочетание слова «двадцать», «ниш», и слова «два», «мин». Число 555 в шестидесятеричной системе счисления, то есть 5 × (60)2 + 5 × (60) + 5, в нашей, десятеричной системе счисления будет означать 18 305.
По поводу того, какая логика обстоятельств вынудила шумерцев выбрать столь необычное основание для своей системы счисления, выстроено много гипотез. Некоторые из них опираются на особые математические свойства числа 60: это первое число, которое делится на 1, 2, 3, 4, 5 и 6. Другие гипотезы пытаются связать 60, например, с количеством месяцев и дней в году (округлив число дней до 360) в каком-то сочетании с числами 5 и 6. Совсем недавно учитель математики и писатель из Франции Жорж Ифра в своей замечательной книге «Всеобщая история чисел» (Georges Ifrah. A Universal History of Numbers) заметил, что выбор числа 60 мог быть следствием смешения двух народов-иммигрантов, один из которых пользовался пятеричной, а другой – двенадцатеричной системой счисления. Очевидно, что основание 5 происходит от количества пальцев на одной руке, и следы подобной системы еще видны в некоторых языках, например, у кхмеров, жителей Камбоджи, а еще заметнее – в мертвом языке саравека, на котором говорил южно-американский народ сараве. Основание 12, множество следов которого заметны даже в современных языках и культурах – возьмем хотя бы британскую систему мер и весов – вероятно, происходит от количества фаланг на четырех пальцах (без большого пальца, потому что именно им производился подсчет).
Иногда в самых разных местах попадаются и экзотические системы счисления. В «Алисе в Стране Чудес» Льюиса Кэрролла Алиса, чтобы удостовериться, что она понимает, в каких странных обстоятельствах очутилась, говорит: «А ну-ка, проверю, помню я то, что знала, или нет. Значит так: четырежды пять – двенадцать, четырежды шесть – тринадцать, четырежды семь… Так я до двадцати никогда не дойду!» (Пер. Н. Демуровой). Знаменитый писатель-популяризатор математики Мартин Гарднер в своих комментариях к книге Кэрролла приводит остроумное объяснение такой необычной таблицы умножения, к которой прибегла Алиса, почерпнутое из книги А. Л. Тейлора «Белый рыцарь» (A. L. Taylor. The White Knight. L., 1952): «Для системы счисления, использующей как основание 18 (“восемнадцатеричная”), 4 × 5 действительно равняется 12. В системе счисления с основанием 21 справедливо равенство 4 × 6 = 13. Если продолжить эту прогрессию, каждый раз увеличивая основание на 3, то произведения будут увеличиваться на единицу, пока мы не дойдем до 20. Здесь впервые наш метод откажет: 4 × 13 равняется не 20 (для системы чисел с основанием 42), а “1”, за которой будет следовать символ, играющий роль “10”» (Пер. Н. Демуровой). Эта гипотеза, несомненно, подкрепляется тем фактом, что Чарльз Доджсон, избравший себе псевдоним Льюис Кэрролл, был математиком и читал лекции в Оксфорде.