bannerbanner
Настройки чтения
Размер шрифта
Высота строк
Поля
На страницу:
5 из 5

Операторы Calutron на заводе Y-12 в Ок-Ридже по обогащению урана (США). Глэдис Оуэнс, сидящая справа на переднем плане, не знала, чем она занимается на работе (здесь она работала 8 месяцев), до того, как увидела эту фотографию 50 лет спустя на общественной выставке


Циклотрон Calutron Лоуренса на заводе Y-12 в Ок-Ридже, штат Тенесси, – на его катушки ушло 14 700 тонн серебра


Методом газовой диффузии обогащённый уран для бомбы «Малыш» получили на заводе К-25, но первоначальное обогащение всего на уровне 7 % после запуска этого завода оказалось недостаточным, – надо было обогатить уран до 90–92 % содержания Урана-235. Для первой атомной бомбы этот процент обогащения получили на «Каллютроне». Такая технология оказалась слишком долгой и затратной (особенно по затратам электроэнергии), и для массового производства атомных бомб далее не применялась. Путём наращивания дополнительных каскадов машин газодиффузионную технологию «довели» до выхода на них оружейного урана-235 как в США, так и в СССР (с отставанием на 5 лет – ниже об этом рассказано).

Завод К-25 в Ок-Ридже был первым крупным заводом по обогащению урана. Его строительство началось в июне 1943 года, и в начале 1945 уже было завершено. К этому времени К-25 стал крупнейшим сооружением мира и самым дорогим сооружением в рамках Манхэттенского проекта. Расходы только на строительство составили 512 миллионов долларов. К огромным по масштабам строительным работам привлекли одновременно множество строительных фирм. Сооружение выполнено в форме большой буквы U длиной 800 м и шириной 300 м. Таким образом, по занимаемой площади К-25 превышает Пентагон примерно в 2 раза (площадь Пентагона 116 тыс. кв м, а каждая из сторон его фасада: 281 м). В 1954 году Ок-Ридж потреблял 10 % электроэнергии, вырабатываемой в США. Строительство начали раньше, чем разработали саму технологию газовой диффузии. В 1944 году в здании работало более 25 тыс. человек. Большая часть из них не знала, над чем они работают. Чтобы разместить рабочих в непосредственной близости был сооружён микрорайон Happy Valley, в котором сначала 15 000 рабочих жили в жилищных вагончиках. Производство прекратили в 1987 году, а в 2010 году здание разобрали. После дезактивации только небольшой, наименее заражённый участок здания в основании U сохранили в качестве музея. Фото завода, Ок-Риджа и сноса завода – см. https://specnazspn.livejournal.com/1647131.html.


Корпуса завода К-25 в Ок-Ридже (на пике работ: 100 000 рабочих)


Завод К-25 с корпусами «километровой» длины, в которых на нескольких этажах установлены многие тысячи газодиффузионных машин


Главный диспетчерский пост завода К-25 в Ок-Ридже


Ок-Ридж 21 апреля 1959 года – город, возникший на месте полупустыни


Первый американский экспериментальный уран-графитовый ядерный реактор «Чикагская поленница» (Chicago Pile-1, CP-1) Энрико Ферми запустил и первым в мире получил на нём цепную ядерную реакцию 2 декабря 1942 года под западными трибунами стадиона «Стат Филд» в Чикаго. Реактор позволил изучить процессы управления реакторными установками. Но перед созданием крупных реакторов американцы в Ок-Ридже возвели ещё один небольшой экспериментальный реактор «Х-10», который достиг критического состояния в ноябре 1943 г. Американцы на нём обнаружили отличие в составе плутония, полученного на ускорителях, от плутония, полученного из реакторов. Оказалось, что различие состояло в разном содержании изотопа плутония-240. Этот изотоп из-за излучения нейтронов, в частности, изменял условия инициирования ядерного заряда, – «пушечная схема» атомной бомбы для плутония не годилась.

При создании крупных реакторных установок для производства плутония серьёзные проблемы возникли и у американцев, и в СССР, но сведения о них тщательно засекретили. Советские и американские реакторы заметно отличались по конструкции: если американские реакторы имели горизонтальную загрузку топливных сборок и тепловых каналов, то советские имели более удачную вертикальную загрузку.

Сам факт существенных конструктивных различий говорит о том, что технологию постройки реакторов не «позаимствовали в США», – её советские учёные разработали самостоятельно. У американцев из-за плотной кладки графитовых блоков и разбухания тепловых каналов от нагрева и ядерных реакций возникли трещины в стенках реакторов, в сборках и протечки теплоносителя (воды), охлаждавших активную зону. Эти аварии приводили к длительным остановкам реакторов для ремонта, к необходимости перекладок сборок и всей активной зоны и к облучению персонала. О проблемах на советских реакторах сказано ниже. Крупные реакторные установки в США возвели в Ханфорде (округ Бентон, штат Вашингтон) – практически весь старый городок выселили, снесли и построили на нём атомный комплекс и новый город.



Первый промышленный реактор В в Хэнфорде-США


«…Экспериментальный реактор Х-10 в Ок-Ридже представлял собой промежуточное звено между самым первым реактором из Чикаго и крупными реакторами, которые конструировались в Хэнфорде. Чикагский реактор генерировал совсем мало энергии – не больше ватта. Х-10 давал уже миллион ватт. Три хэнфордских реактора, обозначенные В, D и F, были созданы и эксплуатировались фирмой Дюпон. Они были рассчитаны на 250 миллионов ватт. Каждый реактор состоял из графитового цилиндра размером 8,5 на 11 метров, весил около 1200 тонн и содержал 2004 равноудаленных алюминиевых трубки, просверленные по всей длине. В этих трубах помещались урановые элементы – цилиндры диаметром около 2,5 см, заключенные в алюминиевую оболочку. В трубы накачивалась охлаждающая вода. Она обтекала урановые элементы со скоростью около 280 000 литров в минуту. Реактор предназначался исключительно для производства плутония – никаких попыток улавливания тепловой энергии, выделяемой реактором, и преобразования ее в электричество не предпринималось…» (См. Бэггот, см. [25] с. 169).


Промышленный реактор В фирмы Дюпон в Хэнфорде. Горизонтально расположенные трубы с тепловыделяющими элементами пронизывают активную зону отражателя из чистого графита. По трубам насосами прокачивается охлаждающая активную зону вода со скоростью 4,67 кубометра в с.


Поначалу реактор В работал нормально. Но затем реакция в нём стала угасать, пока не остановилась совсем. Через некоторое время физику Уиллеру стало ясно, что причиной остановки могли стать продукты распада, которые активно поглощали нейтроны, и реакция гасла.

Когда в 1938 году Ган и Штрассман обнаружили, что в результате бомбардировки урана нейтронами синтезируется барий, они открыли стабильный конечный продукт долгой и сложной серии ядерных реакций. Когда уран-235 захватывает нейтрон, делится нестабильное ядро урана-236. В ходе одной из возможных ядерных реакций получается цирконий (Zr-98), теллур (Те-135) и три нейтрона. Изотоп циркония радиоактивен, из него получается ниобий, а затем молибден. Аналогично радиоактивный изотоп теллура распадается сначала до йода, потом до ксенона, далее – до цезия и, наконец, до бария.

Уиллер решил, что если один из продуктов этих реакций имеет высокое сродство к нейтронам, то он будет ингибировать (тормозить, подавлять) ядерную реакцию, поглощая свободные нейтроны до тех пор, пока их не станет слишком мало и реакция остановится. Чем больше синтезируется «яда», тем сложнее поддерживать производительность реактора. В конечном счете «яд» подавит реакцию и реактор остановится. В апреле 1942 года Уиллер сделал еще некоторые расчеты и пришел к выводу, что самоотравление может стать серьезной проблемой лишь в том случае, если один из промежуточных продуктов реактора имеет сильный «аппетит» на медленные, «термические» нейтроны. Причем интенсивность захвата нейтронов у такого продукта должна быть примерно в 150 раз выше, чем у самого урана-235.

После проверки реактора «В» оказалось, что воды в нем нет. Теперь наиболее очевидной причиной его остановки представлялось самоотравление. Вскоре после полуночи с 27 на 28 сентября работа реактора возобновилась – около полудня он вновь выдавал девять миллионов ватт, а потом реакция снова стала затухать. Это явление, в свою очередь, свидетельствовало, что «яд» также радиоактивен и имеет период полураспада около 11 часов – примерно столько времени понадобилось, чтобы восстановить работу реактора. Уиллер проверил таблицу измеренных значений полураспада и обнаружил ядерного паразита. Это был изотоп ксенона Хе-135 (с периодом полураспада 9,1 часа по современным данным). Позже выяснилось, что он захватывал нейтроны примерно в 4000 раз активнее, чем уран-235! Продукты распада оставались в структуре металла (урана) и не улетучивались (даже если это был газ) – удалить их можно было только при переработке материалов тепловыделяющих сборок. Продукты распада вызывали разбухание топливных сборок и деформации их оболочек.

После того как проблему обнаружили, устранить ее оказалось относительно просто. Разумеется, физику ядерных реакций изменить было невозможно. Реактор в любом случае синтезировал бы ксенон-135 и сам себя отравлял. Решение было в следующем: в реактор понемногу добавляется урановое топливо – в результате при реакции будет гарантированно генерироваться больше нейтронов, чем сможет поглотить ксенон при равновесной концентрации. К счастью, конструкция реактора допускала такие незапланированные доработки. Для просверливания дополнительных трубок требовались бы значительные затраты и остановка реактора. Предусмотрительность Уиллера себя оправдала. Необходимое урановое топливо можно было добавлять в реактор без кардинальных конструкторских изменений. (см. [25] с. 170).

А проблемы с ксеноном-135 и с разбуханием топливных сборок ТВЭЛов остались в качестве «головной боли» при управлении и более совершенными реакторными установками.

В 1949 году в США уже запустили 4 промышленных реактора по наработке оружейного плутония с мощностью 250 МВт, причём два из них были пущены в сентябре и ноябре 1944 года, а один – в начале 1945 года. К концу 1949 года на этих реакторах было наработано около 700 кг оружейного плутония, в том числе к концу 1945 года – около 120 кг. Такие «темпы» введения реакторов говорили о том, что США намеревались производить атомные бомбы никак не в единичных экземплярах, а массово. Отметим, что СССР к концу 1949 году вряд ли располагал количеством плутония, заметно превышающим 10 кг (Андрюшин, см. [25], с. 38.), в частности, и потому, что к этому сроку в СССР было изготовлено только две атомные бомбы (одну взорвали 29 августа).

Конструкции первых американских атомных бомб

Первые американские бомбы были сделаны по двум разным технологиям, которые американцы развивали параллельно и «конкурентно», – два направления привели к неравнозначным успехам, а остальные направления «провалились» из-за слишком высоких затрат или нерешённых технических проблем. Одно направление – это обогащение урана до оружейного уровня не менее 90 %. Второе – это получение изотопа плутония-239 в ядерных реакторах.

В самом первом бомбе-устройстве «Штучка», взорванном на испытании «Тринити» – «Троица» в Аламогордо 16 июля, и в такой же бомбе, но с оболочкой и собственной автономной электросистемой «Толстяк» (взорванной над Нагасаки) применяли заряд из плутония-239. Заряд шаровой формы имел массу 6,4 кг. Этот плутоний получали в ядерных ректорах вначале с природным, а затем с низко-обогащённым ураном и с замедлителями нейтронов на графите (а после и на тяжёлой воде D2О). При поглощении нейтрона ядро изотопа природного урана-239 становилось ядром плутония-239, который и выделяли из продуктов деления реактора. Циклы превращений урана-238 в плутоний-239 и цикл превращения тория-232 в ядерное горючее Уран-233 включают захват ядром атома нейтрона (n,σ) с последующим бета-распадом β, – циклы следующие (n – нейтрон, σ – поглощение, β – распад с излучением электрона):


92U238(n,σ)→ 92U239 →β93Np239→β94Pu239 – цикл Плутония-239

90Th232(n,σ)→ 90Th233→β91Pa233→β92U233 – цикл Урана-233


В США плутоний-239 производился в Хэнфорде, штат Вашингтон и Саванне, штат Джорджия.

Оружейный уран в США производили на заводе К-25 с дополнительным обогащением на каллютроне Лоуренса, пока завод К-25 не достиг выхода изотопа с требуемой концентрацией.

Мы видим, – в качестве «ядерного горючего» для реакторов и зарядов для атомных бомб необходимо получить определённые изотопы урана и плутония. Однако при определённых условиях оказалось возможным получить цепную реакцию и в природном уране, если удавалось замедлить нейтроны, увеличить их захват атомами урана-235 и произвести в реакторах плутоний для бомб.

Принципиальное доказательство возможности создания атомной бомбы было не только теоретически, но и практически получено после осуществления цепной ядерной реакции (ЦЯР) в ядерном реакторе. В США первую цепную ядерную реакцию в реакторе американские физики во главе с Энрико Ферми получили 2 декабря 1942 г. в Чикаго (установка располагалась на территории студенческого стадиона). Коллектив И. В. Курчатова добился в СССР того же результата 25 декабря 1946 года. Вы видите, – между ЦЯР и первыми испытаниями бомб 16 июля 1945 и 29 августа 1949 и у США и у СССР прошло 2 года и 7 месяцев в обоих случаях плюс 17 дней у США и плюс 27 дней у СССР. Это реальный объективный срок развития данной научной разработки, который тогда заметно уменьшить было нельзя по объективным причинам. Причём обе эти разработки велись фактически в условиях и по логике «аврала» военного времени, – с полной отдачей сил и не жалея средств.


Урановая бомба «Малыш» – «пушечная» конструктивная схема (см. [5], c. 49)


Бомбы имели разную конструкцию. В «Малыше» сжатие заряда ядерной взрывчатки из урана-235 достигалось «пушечной» схемой, – выстрелом части заряда из пушки во вторую часть, являвшуюся мишенью, которая была заключена в толстую наружную оболочку – тампер из карбида бора (отражатель нейтронов и удерживающую заряд в начальное мгновение взрыва). В «Толстяке» заряд сжимался более сильно в результате направленного взрыва внешней взрывчатки, – заряд «имплозивного» типа из «линз» взрывчатки. Без сильного сжатия заряда простым соединением частей заряда в «критическую массу» ядерного горючего взрыв не мог получиться мощным ввиду быстрого распыления ядерного заряда в начальный момент взрыва. И даже при достигнутых американцами сжатиях заряда, он делился только частично, и КПД первых ядерных бомб был на уровне КПД «паровоза» или «автомобиля – порядка 1 % в «Малыше» и до 15 % в «Толстяке», а в более совершенных конструкциях бомб его удалось повысить. Примерно таким же невысоким был и КПД первых крупных баллистических ракет!

На рисунке бомбы «Малыш» красные части заряда – это «мишень» и «снаряд» внутреннего ствола гладкоствольной пушки с длиной ствола 1,8 м, калибром 164 мм. Заряд кордитного пороха 3.5 кг разгонял подвижную часть ядерного заряда в 38,5 кг в виде трубы из колец оружейного урана-235 до скорости 300 м/с. Неподвижная часть заряда в виде мишени-цилиндра из колец с меньшим диаметром, входившими во внутреннюю часть подвижного заряда, имела 25,6 кг урана-235. Общая масса заряда 64,1 кг превышала критическую. Вокруг неподвижной части располагался отражатель нейтронов и «держатель заряда» (тампер – замедлитель) с зазором 59 мм. Инициатор нейтронов выполнили из Бериллия и Полония-210. Полураспад Полония-210 всего 138 суток, поэтому при длительном хранении атомных бомб его надо или заменять, или хранить отдельно и вставлять только перед использованием бомбы. Это – «быстропортящийся» и весьма дорогой элемент, который нуждался в периодическом обновлении. Позже для источников нейтронов бомб стали применять другие вещества, например, на основе дейтеридов и третидов урана (см.[40], с. 180).

При быстром соединении частей заряда происходило его уплотнение и происходил взрыв. При этом распадалось около 0,7 кг урана – около 1 %. Остальная часть распылялась без распада. Дефект массы при взрыве составлял 600 мГ – энергетически от 13 до 18 кТ ТЭ. Масса бомбы 4400 кг, длина 3 м, диаметр 71 см. Взрыв произведён на высоте 576 м над землёй. Потери в Хиросиме (начальные и окончательные): 90–166 тыс. человек.

Примечание. В известном фильме «Девять дней одного года» отец спрашивает Гусева: «Ты «бомбу» делал?» И тот отвечает: «Делал, Батя. А если бы не делал, – так не было бы у нас этого разговора. И половины человечества в придачу…». А в другом фрагменте Гусев сообщает жене, что у него уже был случай, когда он «схватил» изрядную долю радиации. Когда делал эксперимент по определению критической массы «жидкого урана». А почему «жидкого»? Да потому, что в условиях сильного сжатия и высоких температур при инициализации ядерного взрыва металл заряда не может быть в твёрдом состоянии – он жидкий… Конечно, эта фраза – из художественного кинофильма, но в ней есть объективный физический смысл. Таких фраз в фильме немало. Это очень глубокий фильм, – смысл некоторых фраз из него дошёл до нас спустя много лет после первого просмотра ещё в детстве. В частности, слова Гусева дают ответ на вопрос, зачем нужны были огромные затраты на создание ЯО, и за что советские учёные-физики отдавали своё здоровье и свои жизни.

Для «Толстяка» пушечная схема оказалась непригодной. Наличие в плутонии значительных долей изотопа-240 делало процесс активации взрыва по «пушечной схеме» очень нестабильным. Плутоний-240 испускал много нейтронов, которые вызывали преждевременную реакцию заряда с его распылением до достижения необходимой критической массы и, как следствие, – неэффективный взрыв заряда с малой мощностью – «хлопо́к»). «Пушечная схема» оказалась для плутониевой бомбы неприемлемой, поскольку требовала примерно в 100 раз большей скорости соединения зарядов в критическую массу для достижения требуемых параметров инициации заряда. Очистить же плутоний-239 от изотопа-240 было заметно сложнее, чем уран-235 от урана-238 из-за малой разницы в весе атомов этой пары изотопов (240–239=1, а 238–235=3).

Для инициирования плутониевого заряда и перевода его в критическое состояние требовалось сжать его со всех сторон с очень большой силой, с давлением в тысячи атмосфер, причём с очень большой – космической скоростью. Это можно выполнить только с помощью мощного взрывчатого вещества со скоростью горения 7–8 км в с. Привлечённая к этой работе группа Сета Неддельмейера из артиллерийско-технического отдела Пентагона столкнулась с большими трудностями: следовало создать сферическую волну взрыва, направленную не только наружу, но и внутрь для сжатия заряда. Путь для решения проблемы предложил Джеймс Так – английский физик из Манчестера, изучавший кумулятивные эффекты и прибывший в США вместе с другими британскими учёными. В мае 1944 года своё мнение, подкреплённое расчётами, высказал и ведущий британский специалист по гидродинамике Джеффри Тейлор. На основе заключений этих специалистов физики Лос-Аламоса пришли к выводу, что единственно правильным решением будет создание системы «взрывных линз», создающих сферическую волну, направленную внутрь. Оппенгеймер создал два отдела для решения проблемы: отдел «G» («gadget» – устройство), продолжавший разработку бомбы «Толстяк» и отдел «Х» (Explosives – сжатие).

Конец ознакомительного фрагмента.

Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

Конец ознакомительного фрагмента
Купить и скачать всю книгу
На страницу:
5 из 5