Полная версия
Оцифруйся или умри. Как трансформировать компанию с помощью искусственного интеллекта и обойти конкурентов
Для того чтобы стать организацией, ориентированной на данные и ИИ, необязательно быть технологической компанией из Кремниевой долины. Еще до появления Covid-19 мы видели примеры компаний, от Comcast до Fidelity Investments, которые трансформировались для оцифровки своих операционных моделей и мер реагирования на угрозы со стороны конкурентов. Септики все еще сомневались в необходимости и жизнеспособности преобразований для старых компаний. Covid-19 положил конец всем этим спорам.
Мы также узнали, насколько планирование и подготовка улучшают качество и эффективность действий по внедрению полноценных преобразований. То, что удалось сделать в период кризиса таким организациям, как MGH, Novartis и Moderna, стало возможным, потому что они предварительно начали применять новый подход в качестве эксперимента и выстраивать его основу. Даже в Гарвардской школе бизнеса предшествующий опыт онлайн-обучения оказался очень ценным для трансформации работы всего учебного заведения. Теперь задача состоит в том, чтобы поддерживать преобразования и формировать их на основе продуманного и взвешенного подхода.
Эти новые наблюдения подтверждают многие из центральных идей данной книги, главная из которых – операционная структура действительно имеет большое значение. Ориентированная на работу с ИИ компания определяется не сложностью отдельных разрабатываемых ею алгоритмов, а структурой и рабочими процессами, позволяющими оперативно внедрять множество ИИ-решений, каждое из которых направлено на реальную бизнес-проблему. Безусловно, в компании Moderna было предпринято все, чтобы данные, аналитика и ИИ блестяще функционировали. Однако даже на примере MGH, IKEA и Novartis мы видим, что кризис стимулирует компании опираться на те же самые комплексные данные и организационную структуру, чтобы оперативно разрабатывать и внедрять инновационную и точную аналитику. В конечном итоге структура – это то, что обеспечивает оперативные, гибкие, масштабируемые и адаптируемые меры реагирования, которые способны поспеть за экспоненциально растущей угрозой вроде Covid-19, и позволяют осуществлять оперативную ответную реакцию как на вызовы, так и при появлении новых возможностей.
Примеры этих компаний подтверждают также, что при масштабном развертывании простой ИИ (или так называемый «слабый ИИ») может возыметь огромное влияние. Для того чтобы изменить ситуацию к лучшему, ИИ не нужно считать научно-фантастической сказкой. Ведь даже простые алгоритмы, основанные на достоверных данных, могут дать чрезвычайно важные результаты. Так, обыкновенные чат-боты и базовое машинное обучение имеют очень большое значение в том случае, если они устраняют серьезные проблемы в операционной работе или позволяют делать важные прогнозы. Это еще одна ключевая тема данной книги, поскольку она подчеркивает важность слабого ИИ для трансформации экономики и изменения методов работы компаний. Например, большая часть ИИ-технологий, которые внедрялись в больницах для борьбы с Covid-19, включали в себя простые алгоритмы машинного обучения, основанные на достоверных данных. Они помогали с критически важными прогнозами, например относительно поставок респираторов в MGH. Опять же, речь идет о внедрении простой инфраструктуры на основе ИИ в максимально возможном количестве бизнес-процессов.
Необходимо отметить, что подобная трансформация имеет свою цену. Covid-19 резко усилил и расширил влияние цифрового охвата, области применения и обучения в отношении мировой экономики и общества. Пожалуй, наибольшую озабоченность вызывает влияние Covid-19 на цифровой разрыв между богатыми и бедными компаниями и отдельными людьми. Кроме влияния на конкурентоспособность, производительность и доход, цифровой разрыв теперь определяет разницу между теми, кто может работать, и теми, кто нет; между теми, кто может находиться в безопасности у себя дома, и теми, у кого нет такой возможности; между компаниями, которые по-прежнему работают, и теми, кто остановил свою деятельность. Трагизм ситуации также усугубляет и то, что такой раскол усиливает давнее экономическое и расовое неравенство.
Эта пандемия трансформирует каждого из нас и обострит все этические проблемы, связанные с цифровыми организациями и операционными процессами, – от фейковых новостей до предвзятости, от безопасности до конфиденциальности. Таким образом, она ускоряет развал многих государственных и общественных институтов, а также усиливает угрозу гражданским свободам. Пока еще все не закончилось, и каждому из нас важно внимательно следить за обсуждениями и участвовать в них, чтобы помогать информировать и защищать демократические процедуры как на локальном, так и на глобальном уровнях.
От данных к мудрости
Вирус возвращается. Сегодня сидя здесь и печатая заключительные слова для предисловия, мы сталкиваемся с фактически беспрецедентной неопределенностью в том, что касается мирового здравоохранения, экономики и политики. Некоторые из нас наблюдают затишье в распространении Covid-19, и во многих странах экономика начинает восстанавливаться. Несмотря на это данный кризис еще далек от завершения. Когда города в США и других странах открываются вновь, вирус возвращается с новой экспоненциально возрастающей свирепостью. Буквально вчера мы видели новый рекордный максимум зарегистрированных за день случаев заболевания Covid-19 как в США, так и во всем мире. Как только случаи госпитализации добрались до Бостона, MGH стала готовиться к повторному столкновению с вирусом. На всякий случай.
К сожалению, по мере того как пандемия продолжает распространяться, она преподносит нам еще один важный урок: без умелого руководства даже лучшая обработка данных и аналитика не приведут к мудрости. Прискорбно, что лишь малая часть общества усваивает некоторые из тех важных выводов, полученных в период первой волны пандемии. Например, теперь мы знаем со статистической точностью, что маски помогают избежать заражения инфекцией и сверхбыстрого распространения вируса. Тем не менее многие наши руководители не признают, не уважают и не используют в своей работе даже такую простую аналитическую информацию, что фактически приводит к человеческим жертвам, которых можно было бы избежать. И вот мы сидим и с ужасом наблюдаем за тем, как груда наших данных, аналитика и искусственный интеллект не способны внести свой вклад в коллективный разум, а это действительно могло бы положить конец пандемии.
Однако независимо от того, что ожидает нас в будущем, движение на пути к цифровой трансформации экономики уже не остановить. Влияние цифровых технологий повсеместно, и этому можно найти множество доказательств, а набранные темпы развития достигли такого уровня, что данный процесс теперь невозможно повернуть вспять. Что бы ни происходило, мы точно знаем: скорость цифровой трансформации резко возросла, и это формирует безотлагательную потребность в таком подходе к руководству в сфере бизнеса и технологий, который поможет стимулировать работу новой эпохи экономического развития.
Для того чтобы оставаться эффективными, наши руководители должны осознавать значение точности и аналитики, иметь базовое понимание технологии и экономической составляющей информационных платформ, цифровых сетей и искусственного интеллекта, обладать страстным желанием перемен и преобразований. Однако более всего им необходимо отличное знание этических норм относительно цифрового масштабирования, области применения и обучения, а также глубокое понимание негативных экономических и социальных последствий в случае неправильной трансформации. Мы искренне надеемся, что эта книга послужит для них стратегическим ресурсом.
Марко Янсити и Карим Р. ЛаханиИюль 2020 г.Глава 1
Эпоха ИИ
«Это Рембрандт!» – воскликнул, воздев руки, аккуратно одетый седовласый джентльмен. Другие посетители не могли не согласиться с авторитетным мнением руководителя австралийского художественного музея. Убеленный сединами господин заявил, что без труда узнал руку голландского живописца XVII века. Однако спустя мгновение джентльмен растерялся: удивительно, но он никак не мог вспомнить названия картины, представленной на рисунке 1.1.
Рисунок 1.1. Новый Рембрандт
Источник: репродукция с разрешения архива ING и J. WalterThompson
Растерянность развеялась позже, когда для посетителей включили видеофильм, на котором для притихшей аудитории описывался процесс создания картины {5}. Портрет не принадлежал кисти Рембрандта. Если быть точнее, он был создан в 2016 году командой людей из J. WalterThompson и Microsoft для продвижения рекламной кампании голландского банка ING Group. Картина состоит более чем из 148 миллионов пикселей. Каждый пиксель был создан на основе 168 283 вариантов отсканированных изображений трехсот работ Рембрандта.
Группа исследователей данных, инженеров и экспертов по Рембрандту, применила алгоритм глубокого машинного обучения для анализа портретов. Они вычленили набор конкретных характеристик, свойственных манере написания картин художником. На новой картине изображен белый мужчина в возрасте от тридцати до сорока лет, с бородкой, в шляпе и с белым воротником, лицо обращено вправо, словом, все, что соответствовало манере великого живописца. Дополнительные алгоритмы были использованы для того, чтобы собрать компоненты в единую, полностью сформированную композицию. Далее 3D-принтер напечатал тринадцать слоев УФ-чернил, имитируя мазки художника. Таким образом, картина, названная «Новый Рембрандт», появилась на свет с помощью искусственного интеллекта через 350 лет после смерти художника.
Искусственный интеллект (ИИ) набирает вес в искусстве, объединяя различные дисциплины и медиа, расширяя диапазон художественных возможностей. Например, с помощью программы «Искусство и машинный интеллект» (AMI) компания Google организовала сообщество художников и инженеров для исследования преобразования творческой деятельности {6}. Сообщество применяет разнообразные стилистические технологии, нашедшие применение в «Новом Рембрандте» и в различных медиасферах: от фильмов до музыки. AMI и другие программы еще сильнее вовлекают ИИ в творческую деятельность: помимо повторения уже известных стилей, ИИ используется для создания совершенно новых произведений искусства {7}
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.
Примечания
1
Отделение реанимации и интенсивной терапии. (Прим. ред.)
Комментарии
1
Больше видео по ссылке https://nextrembrandt.com
2
Blaise Aguera y Arcas “What Is AMI?” Medium, 23 февраля 2016. URL: https://medium.com/artists-and-machine-intelligence/what-is-ami-96cd9ff49dde
3
Jennifer Sukis “The Relationship Between Art and AI”. Medium, 15 мая 2018. URL: https://medium.com/design-ibm/the-role-of-art-in-ai-31033ad7c54e
4
Клейтон М. Кристенсен. Дилемма инноватора. Как из-за новых технологий погибают сильные компании. М.: Альпина Паблишер, 2019.
5
Больше видео по ссылке https://nextrembrandt.com
6
Blaise Aguera y Arcas “What Is AMI?” Medium, 23 февраля 2016. URL: https://medium.com/artists-and-machine-intelligence/what-is-ami-96cd9ff49dde
7
Jennifer Sukis “The Relationship Between Art and AI”. Medium, 15 мая 2018. URL: https://medium.com/design-ibm/the-role-of-art-in-ai-31033ad7c54e