bannerbannerbanner
Жизнь и наука. Скорость света. Мировой эфир. Машина Времени. Морфогенетические поля. Репликация объектов. Безопорное движение
Жизнь и наука. Скорость света. Мировой эфир. Машина Времени. Морфогенетические поля. Репликация объектов. Безопорное движение

Полная версия

Жизнь и наука. Скорость света. Мировой эфир. Машина Времени. Морфогенетические поля. Репликация объектов. Безопорное движение

текст

0

0
Язык: Русский
Год издания: 2020
Добавлена:
Настройки чтения
Размер шрифта
Высота строк
Поля
На страницу:
2 из 2

К чему? Все гораздо проще.

Еще задолго до того в измерение скорости света, «подталкиваемого» микрочастицами, включается автор. Обычная лампа белого света. Такие есть на вашей работе. Ионы несутся в ней со скоростью, которую можно сравнивать со световой. С помощью диода заставляем частицы лететь то в одну сторону трубки, то в другую. Сверхбыстрых датчиков и скоростных осциллографов у меня нет. Поэтому просто проецируем изображение лампы на экран с помощью камеры-обскуры (отверстие в щитке). Если у квантов появляется продольная составляющая скорости, изображение должно смещаться. Так и происходит.


Этот опыт, в отличие от эксперимента с синхрофазотроном, вы можете повторить сами


Для тех, кто любит подробности. По материалам статей автора в журнале «Техника-Молодежи», №10, 2001 г. и №3, 2002 г.

«…В бытовой люминесцентной лампе температура плазмы имеет порядок десятков тысяч градусов. Это соответствует движению заряженных частиц со скоростью порядка 1000 км/с. Фотоны, излучённые ионами, летящими со скоростью V, должны иметь скорость С+V, направленную вдоль оси лампы параллельно экрану, в соответствии с классическим принципом сложения скоростей, а не с формулами СТО. Если это так, пятно сместится в направлении движения ионов, излучающих свет. Если верен второй постулат СТО, смещения не произойдёт. Я использую неоновую лампу с прозрачной для УФ излучения стеклянной оболочкой. Свет излучателя проходит через узкую диафрагму и попадает на экран, расположенный параллельно плоскости электродов излучателя на расстоянии 0,8 м. Направление тока можно менять с помощью диода. На экране появляется изображение лампы… При изменении направления тока оно смещается в сторону движения ионов на 11 мм. Это означает, что скорость света С складывается со скоростью движения источника V по «баллистическому» принципу. По косвенным оценкам скорость ионов имеет 2000 км/с. Это неплохо согласуется с результатами эксперимента. Следовательно, либо второй постулат СТО неверен, либо его смысл нуждается в особых разъяснениях.


Инструментарий домашней лаборатории – ртутная и неоновая лампы вместо синхрофазотрона


Опыт с переменой полярности и призмой


Как говорится, «Ein Versuch ist kein Versuch» (искать-так искать), и поэтому я ставлю второй опыт с неоновой лампой, изменив условия. Основным элементом является теперь призма, по-разному отклоняющая лучи света с разной длиной волны. Если скорость света больше С, спектр сдвигается в фиолетовую сторону. Если меньше С, происходит «красное смещение», как при наблюдении удаляющегося источника излучения. И это не эффект Хаббла. Неоновую лампу я размещаю так, чтобы плоскость электродов оказалась перпендикулярна экрану обскуры. При включении лампы, на экране возникает световое пятно. После перемены полярности луч смещается на 24 угловые минуты. Пользуясь известными формулами, вычисляем, что в данном случае изменение скорости света составляет 520 км/с., с погрешностью 85 км/с.

Обращаю ваше внимание на то, что изменение коэффициента преломления призмы из за различной скорости фотонов в падающем на стекло луче, как правило, маскируется свойством преломляющей среды. Коэффициент преломления, именно из-за различий скорости квантов в вакууме (воздухе) мало зависит от цвета, и аномально велик. Данный опыт базируется на довольно тонких предположениях, и не обладает достаточной наглядностью. Правильнее было бы использовать два мало инерционные фотодатчика, поставленные по ходу пульсирующего луча и соединенные с высокоскоростными осциллографами. Перемена полярности лампы выявила бы всю правду, какой из лучей летит быстрее. Раз и навсегда. Такого инструментария у автора нет.

Поиск эфира. Поиск всего

Интерферометр Майкельсона-Морли. 1. Источник света 2. Экран для наблюдений интерференционной картины. 3. Луч, отраженный перпендикулярно плечу интерферометра и отклоненный потоком эфира влево. 4. Луч, испущенный навстречу потоку эфира и потому участвующий в построении интерференционной картины. 5. Луч, отраженный от зеркала плеча интерферометра, предположительно, направленного вдоль эфирного потока. Рисунок вверху. Опыт автора с отклонением луча лазера. 1. Лазер. 2. Лазерный луч в 9 утра. 3. Луч в 17 часов. Для наглядности угол увеличен. 4. Место отметки на экране в 9 часов. 5. Отметка в 17 часов. Экран и лазер разделены 90 м. Разница положений луча на экране, на протяжении пяти дней составляет 3 см.


…Существует ли эфир, этот своего рода океан, в котором прокатываются световые волны? И, как мы предполагаем, сохраняющий тени минувшего вполне свежими, навсегда? Наведем ревизию физики. Интерферометр Майкельсона-Морли. Луч делится полупрозрачным зеркалом. Один из них идет навстречу потоку эфира, затем обратно. Его скорость меняется. Второй перпендикулярен потоку и потому служит эталоном скорости. При несовпадении скоростей интерференционная картина изменится. На рисунке внизу слева автор представляет, что положение, будто лучи проходят строго перпендикулярные пути, неверно. Во время хода по плечам интерферометра, лучи отклоняются эфирным потоком. В детектор попадают волны, изначально отклоненные навстречу потоку эфира. Схема построения реальной интерференционной картины много сложнее рисунков Майкельсона. Кроме того, согласно рассуждениям об эффекте Мессбауэра, отчетливо наблюдается лишь свет, имеющий скорость «стандартная С», 300 000 км. с. Рисунок над интерферометром. Опыт автора. Отклонение луча лазера, предположительно за счет увлечения эфиром. Если эфир увлекает свет, при указанных параметрах, скорость потока среды составляет 100 км. с. Это значение хорошо согласуется со скоростью обращения Земли вокруг центра Галактики, 200—220 км. с.. Почему не заметили раньше? При эксплуатации систем лазерной связи, система «выводится на ноль» автоматически или вручную. Это правило считается нормой. Более правдоподобное объяснение. Днем воздух в помещении, где проводится эксперименты, прогревается. Воздушная линза искажает луч.


«Интерферометр для бедных». И это даже не интерферометр


…Спустя несколько лет, этот свой опыт я решаю повторить. Величина отклонения луча, полученная в предварительной пробе достаточно велика для того, чтобы попробовать создать «интерферометр для бедных», с возможностью изменения направления сканирования эфира вручную. На массивном брусе размещаются параллельные друг другу зеркала и лазерный прицел. Длина хода отраженного два раза луча составляет 6,5 метров. Поворачивать устройство и наблюдать одновременно за изменением положения луча неудобно. Для фиксации результатов применяется жестко закрепленный на брусе (здесь не показан) электронный фотоаппарат.

…Сначала воспроизводим стационарный эксперимент. Луч отправляем не в объектив, а на стену лаборатории. Так длина хода света возрастает до 10 метров. Все сходится. Спустя 5 часов, световое пятно показывает новое положение, 4 миллиметра ниже. Настораживает то, что спустя сутки, то есть, оборот Земли вокруг оси, оно не возвращается к исходной отметке.

Переходим к самостоятельным поворотам «интерферометра», без помощи планеты.



Действие происходит поздним вечером. Первый снимок, скан непрерывной видеосъемки – луч идет от Востока (хотя еще два раза меняет направление, отражаясь от зеркал). На приведенных снимках не видно сетки, наложенной редактором Пойнт. Однако я вижу, что вертикальная линия, образованная лучом во взаимодействии вероятно, с оптикой фотоаппарата, сколько то сдвигается. Из серии сканов, для демонстрации в книге выбираем наиболее характерные. Восток, Северо- Восток, Запад, снова Восток. Наибольшую яркость луч принимает при ориентации на Запад. Единственный достоверный, хорошо воспроизводимый результат, который не стыдно представить вам, уважаемый читатель – яркость свечения.

Мы можем исключить из опыта зеркала и получить своего рода элементарную оптическую пару. Луч идет только в одном направлении. Результат тот же.

…Действительно, распространяясь против эфира, или по течению, свет соответственно теряет и приобретает энергию. С изменением направления луча сложнее. Хотя оно тоже есть.


Два аналогичных опыта на открытом пространстве. Определение отклонения луча (яркость не рассматривается из за внешней неравномерной освещенности). Направления  – Север, Восток, Юг, Запад, исходная точка – Север


…Выходим на свежий воздух и продолжаем опыты. Некоторые исследователи полагают, что эфир может быть замедлен, и вовсе приведен в состояние относительного покоя, такой преградой как простое оконное стекло.

Результат в обоих случаях тот же. В течении нескольких минут после включения, лазерный луч уходит вниз на 1, 5 – 2 миллиметра.

…Все это, вкупе со странностями настройки прибора, говорить о которых здесь было бы слишком долго, подводит к мысли, что искать Причины следует в другом месте. Для этого надо сделать шаг в сторону.

Поиск света. Шаг в сторону

Основная идея – лазерный луч испытывает своего рода притяжение плоскопараллельной поверхности. В данном случае – поверхности бруска. Или же пола помещения. И с притяжением гравитационным родства здесь нет никакого.

К учебникам физики изначально есть серьезные вопросы. Какова ширина фотона видимого света? Официально – половина длины его волны. То есть две десятитысячных миллиметра. Тем не менее, свет отклоняется интерференционными решетками и просто отверстиями в десятые доли миллиметра. Разница тысячи раз. Что же заставляет фотон чувствовать наличие атомов края препятствия? Каким дальнодействием обладают эти силы? Кто нибудь проверял, отклоняются ли фотоны краем экрана, находящимся на удалении от луча один миллиметр… сантиметр, или может, метр? Сразу взаимодействие происходит, или нужно время для предварительной настройки света и материи?

Как сказано, данные эксперименты – шаг в сторону. Проводились они без энтузиазма. Но, все же, дали пищу для размышлений.


Классика дифракции. Обратите внимание на дискретную, кластерную картину света, дифрагировавшего на проволочке


…Более всего при подготовке к новым экспериментам меня заинтересовала природа интерференции. Как так? Световые волны, складываясь в суперпозиции, исчезают? Аннигилируют они, что ли? Учебники физики повествуют об этом довольно туманно. Нет, не исчезают. Закон сохранения энергии в порядке. Сила волн из темного участка экрана проявляется в светлом.

Еще раз, товарищи академики – простите, мы не поняли. Вот, это ваши же рисунки. Здесь совершенно определенно показан ход электромагнитных волн. Они в темной зоне – есть! Но их не видно. От слова «совсем». Куда же они подевались?

И сказка про белого бычка начинается сначала.

Отставив тему дальнодействия краев препятствий на свет на потом, я решил получше присмотреться к интерференции.


…Парадигма современной науки – светлые и темные зоны интерференционной картины образуются наложением электромагнитных волн. Здесь есть серьезные вопросы (см. выше). Почему бы не представить, что края объектов сами распределяют свет в выбранных ими направлениях? Ну или уж, простите, скопившиеся вблизи них облачка эфира. В телах имеется дискретное распределение микрочастиц – элементарных излучателей. Они могут отклонять луч по выбранным направлениям, создавая лишь видимость интерференции. Классическая суперпозиция не при чем?..

Первое, что удивило меня, когда я взялся за опыты – свет не только огибает препятствие, но и отталкивается от него. Книги подтвердили то, что ранее скользило мимо сознания. Край рассеивает свет во все стороны. Что вполне согласуется с гипотезой материального маяка, рассылающего фотоны по выбранным направлениям.


Дифракция. Край препятствия рассылает фотоны в противоположные стороны. Элементарно, но непонятно


Теперь внимательно, уважаемый читатель. Мы создаем экраны из различных материалов, выставляем в луч и наблюдаем за интерференционной картиной. Согласно приведенным выкладкам, картина складывается из взаимодействия маяков. Края объектов «договариваются», по каким направлениям следует излучать свет. Есть зоны, в которые посылать фотоны, согласно закону сохранения энергии запрещено. Если экраны выполнены из различных материалов, создаваемая ими «интерференционная» картина будет иметь отличия. Или же ее не станет вовсе. Такие передатчики работают на разных частотах, и потому не смогут согласовать распределение света.


Опыт по интерференции от экранов, имеющих различный физико-химический состав


Обычная интерференционная картина в месте пересечения веера лучей от краев препятствий (правая половина)


…Отличий картин интерференционных полос при сочетании экранов из разных материалов обнаружить не удалось. Надежда была на полное, даже демонстративное отсутствие интерференционных линий в зоне перекрытия «разнородных» лучей. Не удалось выявить различий при удалении препятствий друг от друга до 40 см. Надо полагать, дистанция, на которой наши «маяки» перестают сообщаться друг с другом, слишком велика для домашней лаборатории…


…Исследована интерференция от краев непрозрачных жидкостей. И в этом случае интерференционная картина образуется четкая, и сразу.

Исследована интерференция на границах биологических объектов, от срезов корнеплодов, как то, картофеля, яблок и свеклы.

Классический принцип интерференции как суперпозиции электромагнитных волн подтверждает свое реноме.

Но это не точно



…Уважаемый читатель! В данной книге опыты приведены как будто автор выполняет их по порядку, в соответствие с определенной, заранее приготовленной схемой. Это не так. Вся жизнь, и наука в том числе – смесь предположений, опытов, проведенных в разное время,  объединенных для удобства нашего чтения. Эксперимент, о котором рассказано ниже проведен одним из первых, в середине 1990-х годов. Уже тогда мое юношеское любопытство терзал вопрос о том, куда же деваются скрещенные в противофазе волны. Воздушные, водные или электромагнитные – да в общем, все равно. Итак, куда?

Не найдя ответ в различного рода наставлениях по физике, автор обратился к опыту. В своих сомнениях он оказался не одинок. Эту, возможно первую мою статью опубликовали. Представляю переработанную версию.


Электромагнитные волны в противофазе. Для удобства представления показана только одна составляющая луча


Итак друзья, представим, что мы взяли два одноцветных луча от хороших лазеров и скрестили их под ничтожно малым углом (см. рис.). В противофазе. Что должно произойти в этом случае?

Свет… исчезнет.

По логике все происходит именно так. Но физика выше линейной логики. Более того, она выше даже и высшей математики. Материальные объекты вовсе не желают, чтобы их каким то образом складывали, вычитали и умножали. Они такие какие они есть. И с этим, как и с нравом капризной жены, данной вам навсегда, в радости и горести, приходится мириться.

Мерило истины – натурный эксперимент. Поэтому, сколько то раскачавшись, я приступаю к физическим опытам.


Опыт с «черным светом»


Взгляните на рисунок, любознательный читатель. Цифрой (3) указан источник когерентного света, лазерная указка. (4) – дифракционная решетка. Здесь свет разделяется на множество когерентных лучей. Если выставить на пути этой смеси листок бумаги, мы увидим спекл. То есть, набор черных и белых (или уж, красных и черных) точек, подобный тому, что мы наблюдаем на экране не настроенного телевизора. В черных областях, согласно учебникам, скрещенные лучи (1,2) складываются в противофазе. И, стало быть, на время исчезают для мира.

Что, если в таком невидимом состоянии свет полностью перестает взаимодействовать с грубой материей? В частности и с непроницаемыми дотоле экранами? Пройдя положенные пути без какого либо гашения, лучи выходят друг из друга и являются изумленному наблюдателю как бы вынырнувшими из пустоты?!..


…Заряжаем фотоаппарат (7) пленкой в 400 единиц светочувствительности. Вместо объектива у нас тубус (6). Преграда на пути света – металлическая фольга. Включаем лазер, открываем затвор на несколько часов. Мы ожидаем, что спаренные лучи, преодолев экран в области пространства (5), разойдутся внутри тубуса и засветят фотопленку. Это было бы интересно. Нечто вроде рентгена светом оптического диапазона.

Но чуда не произошло. Фотографии получились без засветки.

…Лучи не складываются в противофазе. Одна волна своей «вершиной» не закрывает «впадину» другой. Там, где тьма, просто ничего нет. Примерно так и указывают учебники физики, противореча самим себе, и не раскрывая суть явления.

Попробуем сформулировать недосказанное.

Лучи, или то, что так выглядит, распределяются в пространстве самой дифракционной решеткой. Именно этот чудесный набор одинаковых «прутьев» решает, где будет свет, а где – тьма.


Классический эксперимент с дифракцией


Сложение световых волн. Так указано в учебниках физики. Под одним углом волны складываются в противофазе, порождая темноту. Под другим углом – усиливают друг друга. На самом деле, вопрос где будет свет, а где темнота, решается раньше. Самой решеткой. Которая надо полагать, обладает многими чудесными свойствами.


Наш вывод. Следуют всесторонне изучать такой объект как дифракционная решетка. Вероятно атомы ее одинаковых элементов – «прутьев», дистанционно чувствуют друг друга и согласованно распределяют лучи. Мгновенная корреляция и «запутанность» физических объектов – то, что сейчас в тренде у мирового научного сообщества. Но, оказывается, для исследования квантовой коммуникации

Конец ознакомительного фрагмента.

Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

Конец ознакомительного фрагмента
Купить и скачать всю книгу
На страницу:
2 из 2