Полная версия
Тонкая настройка компьютера с помощью BIOS. Начали!
Юрий Николаевич Зозуля
Тонкая настройка компьютера с помощью BIOS. Начали!
Введение
Персональные компьютеры прочно вошли в нашу жизнь и успешно используются миллионами людей для работы и отдыха. Безусловно, каждый хочет, чтобы его компьютер работал быстро и надежно. Для этого периодически нужно обращаться за помощью к техническим специалистам, но все можно сделать и самому.
Действенная настройка компьютера немыслима без программы BIOS, которая отвечает за запуск компьютера и установку параметров оборудования. Программа BIOS многим пользователям кажется сложной и непонятной, но с помощью этой книги вы быстро научитесь с ней работать и сможете применять BIOS для эффективной настройки компьютера.
Издание предназначено для широкого круга читателей, желающих легко и быстро разобраться в принципах работы BIOS и научиться настраивать компьютер с ее помощью. Для работы с книгой не требуется специальных знаний, достаточно обладать навыками пользователя в среде операционной системы Windows и иметь общее представление об устройстве и работе компьютера.
С помощью книги вы сможете самостоятельно настраивать основные компоненты компьютера: процессор, системную плату, память, видеоадаптер и т. д. Это позволит вам существенно увеличить производительность системы при сохранении ее стабильности. А любители экспериментов получат рекомендации, как эффективно, а главное – безопасно, разогнать компьютер. Вы найдете сведения о настройке и ускорении самого современного «железа» на момент выхода книги (например, процессоров Intel Core i3/5/7 и AMD Phenom II/Athlon II).
От издательства
Ваши замечания, предложения, вопросы отправляйте по адресу электронной почты gromakovski@minsk.piter.com (издательство «Питер», компьютерная редакция).
Мы будем рады узнать ваше мнение!
На сайте издательства http://www.piter.com вы найдете подробную информацию о наших книгах.
Глава 1
Общее устройство компьютера
Прежде чем приступить к изучению параметров BIOS, следует ближе познакомиться с устройствами, находящимися в системном блоке компьютера, и с их взаимодействием между собой.
Что находится внутри системного блока
Внутри системного блока находятся устройства, предназначенные для обработки и хранения информации (рис. 1.1). В зависимости от конфигурации компьютера они могут быть различными, но в большинстве случаев в компьютере присутствуют следующие устройства.
□ Блок питания. Вырабатывает стабилизированное напряжение для питания всех устройств, находящихся в системном блоке.
□ Системная, или материнская, плата. Базовое устройство компьютера для установки процессора, оперативной памяти и плат расширения. К ней подключаются устройства ввода-вывода, дисковые накопители и др. Системная плата обеспечивает их взаимодействие, используя специальный набор микросхем системной логики, или гипсет.
□ Процессор. «Сердце» компьютера, служит для обработки информации по заданной программе.
□ Оперативная память. Используется для работы операционной системы и программ, а также для временного хранения текущих данных. Она выполнена в виде модулей, установленных на системную плату, и может хранить информацию только при включенном питании.
□ Видеоадаптер. Служит для формирования изображения, которое потом выводится на монитор. Обычно выполняется в виде платы расширения, но может быть встроенным в системную плату.
Рис. 1.1. Системный блок типичного персонального компьютера
□ Жесткий диск. Основное устройство для хранения информации в компьютере.
□ Дисковод для дискет. Присутствует в большинстве компьютеров прежних лет выпуска, но в новые компьютеры обычно не устанавливается как устаревший. Вместо дисковода может присутствовать устройство для чтения flash-карт (кардридер).
□ Привод CD или DVD. Компакт-диски и DVD широко используются для передачи и хранения информации, поэтому приводы есть почти в каждом компьютере.
□ Платы расширения. При необходимости в системный блок можно установить дополнительные устройства, выполненные в виде плат или карт расширения. Примерами таких устройств могут быть модемы, сетевые платы, ТВ-тюнеры и др.
Процессор и его параметры
Современный процессор – это микросхема с несколькими сотнями выводов, которая устанавливается в специальный разъем на системной плате; сверху на нем закрепляется радиатор с вентилятором для охлаждения (его также называют кулером). В современных компьютерах могут использоваться процессоры производства двух компаний.
□ Intel. Выпускает процессоры под марками Pentium, Celeron, Core 2 Duo/Quad, Core i3/5/7 и др.
□ AMD. Основные марки этой фирмы – Phenon, Athlon и Sempron.
Каждая модель процессора устанавливается в разъем соответствующего типа с определенным количеством контактов. Ниже приведен перечень популярных процессорных разъемов последнего десятилетия.
□ Socket 478 – для Pentium 4, Celeron.
□ LGA 775 – для Intel Core 2 Duo/Quad, Pentium 4/D/E/Dual-Core, Celeron D и некоторых других моделей.
□ LGA 1366 – для Intel Core i7.
□ LGA 1156 – для Intel Core i3/5/7.
□ Socket A (462) – для Athlon XP, Duron и некоторых моделей Sempron.
□ Socket 754 – для Sempron, Athlon 64.
□ Socket 939 – для Athlon 64/FX/X2.
□ Socket AM2 – для Athlon 64/FX/X2, Sempron и процессоров Phenom.
□ Socket AM3 – для Phenom II/Athlon П. Процессоры для разъема АМЗ можно также установить в разъем АМ2, но не наоборот.
Работа процессора заключается в последовательном выполнении команд из оперативной памяти. Чем быстрее процессор выполняет команды, тем выше производительность компьютера в целом. Скорость работы процессора зависит от нескольких параметров. Рассмотрим их.
□ Тактовая частота. Параметр, показывающий реальную частоту работы ядра процессора, которая может составлять 1,5-4 ГГц. Тактовая частота определяется умножением внешней, или базовой, частоты на определенный коэффициент.
Процессоры Intel Pentium и Core 2 используют для обмена данными с другими устройствами шину FSB (Front Side Bus), частота которой является базовой для процессора. Например, процессор Intel Core 2 Duo E6600 использует частоту FSB 266,6 МГц (1066 МГц, если учесть четырехкратное умножение при передаче данных) и множитель 9, в результате чего тактовая частота равна 2400 МГц.
В современных процессорах AMD для связи процессора с чипсетом применяется шина НТ (HyperTransport), а в Intel Core i3/5/7 – шина QPI (QuickPath Interconnect). В этих системах для установки частоты процессора и частоты шины QPI (НТ) используются отдельные множители.
□ Количество ядер. Поскольку тактовые частоты современных процессоров приблизились к физическому пределу, для повышения их производительности применяется объединение нескольких процессоров в одном корпусе. На момент написания книги процессоры с одним ядром (одноядерные) устанавливались только в самые дешевые системы, а в большинстве новых компьютеров использовались процессоры с 2-4 ядрами. В ближайших планах производителей – выпуск шести– и восьмиядерных процессоров.
□ Внутренняя архитектура. Современные процессоры умеют выполнять за один такт сразу несколько команд, и этот показатель постоянно увеличивается. При одинаковых значениях тактовой частоты и количестве ядер процессоры с более современной архитектурой будут работать быстрее. Например, одноядерный процессор Celeron 420 с тактовой частотой 1600 МГц работает приблизительно в два раза быстрее старых моделей Celeron с частотами 1700-2000 МГц.
□ Объем кэш-памяти. Процессор работает значительно быстрее, чем оперативная память, и при обращении к ней процессору приходится некоторое время простаивать в ожидании результата. Чтобы снизить простои, непосредственно на кристалле процессора устанавливается небольшой объем очень быстрой памяти, называемой кэшпамятью.
Современные процессоры имеют двух– или трехуровневую организацию интегрированной кэш-памяти. Кэш-память первого уровня (L1) обладает наивысшей скоростью и небольшим объемом (обычно 16-128 Кбайт). Кэш-память второго уровня (L2) характеризуется несколько меньшим быстродействием, а ее объем может составлять от 128 Кбайт до нескольких мегабайт, в зависимости от модели процессора. В некоторых моделях имеется также кэш-память третьего уровня (L3), например, AMD Phenom II имеет кэш L3 объемом 6 Мбайт, a Intel Core i7 – 8 Мбайт.
При маркировке современных процессоров обычно указывают название модели, по которому можно определить принадлежность процессора к определенному семейству, количество ядер и номер модели. Например, маркировка AMD Phenom II Х4 945 означает процессор фирмы AMD семейства Phenom II, который является четырехъядерным (Х4) и имеет номер модели 945. При использовании расширенной маркировки могут указываться дополнительные параметры, например тип разъема для установки, частота FSB/QPI/HT, объем кэшпамяти и др.
ПРИМЕЧАНИЕ
Главным параметром процессоров прежних лет выпуска была тактовая частота, которая и являлась основным обозначением модели. Компания AMD также использовала для маркировки не фактическую частоту, а условный рейтинг производительности. Но в последнее время и Intel и AMD указывают в маркировке просто номера моделей, по которым нельзя сравнивать скорость работы различных процессоров.
В современных процессорах также используются дополнительные функции и технологии, расширяющие возможности процессоров:
□ для работы с мультимедиа и большими объемами данных используются технологии 3DNow!, ММХ, SSE, SSE2, SSE3, SSE4;
□ для защиты от некоторых вирусов в процессорах AMD применяется технология NX-bit (No Execute), в процессорах Intel – XD (Execute Disable Bit), а в новых процессорах Intel появилась технология безопасности Intel Trusted Execution (TXT);
□ для снижения энергопотребления существуют технологии Cool'n'Quiet (в AMD), ТМ1/ТМ2, С1Е, EIST (в Intel);
□ для выполнения 64-битных инструкций используется AMD64 или ЕМТ64 (Intel);
□ для увеличения производительности при использовании виртуальных машин применяются технологии аппаратной виртуализации AMD-V и VT(Intel);
□ с помощью технологии Hyper-Threading (НТ) некоторые процессоры Intel Pentium 4 и Core i5/7 могут выполнять два потока команд одновременно;
□ технология Intel Turbo Boost позволяет автоматически повышать рабочую частоту процессоров Core i5/7 в зависимости от нагрузки.
Системная плата и чипсет
Наиболее важные компоненты компьютера располагаются на системной плате (рис. 1.2). Основа любой системной платы – чипсет, то есть набор микросхем, которые обеспечивают взаимодействие между процессором, памятью, накопителями и другими устройствами. В его состав входят два основных чипа, которые обычно называются северным (Northbridge) и южным (Southbridge) мостами. В чипсетах для процессоров Intel северный мост обозначается МСН (Memory Controller Hub), а южный – ICH (Input/Output Controller Hub).
Рис. 1.2. Системная плата
Основная задача северного моста – обеспечить связь процессора с оперативной памятью, видеосистемой и другими устройствами. Данные между процессором и северным мостом передаются с помощью специальной шины, которая может иметь следующие названия:
□ FSB – в системах на базе процессоров Intel, кроме Intel Core i3/5/7, а также в старых системах AMD;
□ QPI – в системах на базе Intel Core i3/5/7;
□ НТ – во всех современных системах на базе процессоров AMD.
В чипсетах для процессоров Intel Core i3/5/7 и всех современных процессоров AMD контроллер оперативной памяти интегрирован непосредственно в процессор, а северный мост выполняет функции контроллера PCI Express. Поскольку северный мост чипсетов для Core i3/5/7 уже не выполняет функцию контроллера памяти, его название было сменено на ЮН (Input/Output Hub), а в некоторых новых чипсетах он вообще отсутствует.
Южный мост связан с северным с помощью специальной шины, а его основная задача – управление различными периферийными устройствами. Большинство контроллеров периферийных устройств интегрировано непосредственно в южный мост. Вот функциональный состав типичного южного моста:
□ контроллер Serial ATA/RAID;
□ контроллер IDE;
□ контроллер дисковода;
□ контроллер шин PCI и ISA;
□ USB-контроллер;
□ контроллеры портов ввода-вывода.
В составе южного моста могут присутствовать звуковой контроллер и сетевой интерфейс, но нередко эти устройства выполняются в виде отдельных чипов на системной плате. Кроме того, южный мост взаимодействует с микросхемами BIOS и CMOS. Во многих современных чипсетах микросхема CMOS интегрирована в состав южного моста.
Оперативная память
Оперативная память – один из важнейших компонентов системы, она необходима для работы операционной системы и приложений, для обработки и временного хранения данных. Для оперативной памяти может использоваться обозначение ОЗУ (оперативное запоминающее устройство) или RAM (Random Access Memory – память с произвольным доступом).
Во всех современных компьютерах используется так называемая динамическая память, или DRAM (Dynamic RAM); подобное обозначение можно встретить в названиях некоторых параметров BIOS. Динамическая память бывает различных типов, но в последние годы применяются следующие.
□ SDRAM (Synchronous DRAM). Этот тип памяти использовался в уже устаревших системах класса Pentium I/II/III и в аналогичных моделях с процессорами AMD.
□ DDR SDRAM (Double Data Rate SDRAM), или просто DDR. В отличие от обычной SDRAM, в DDR за один такт передается два пакета данных, поэтому данная память работает в два раза быстрее. Этот тип памяти применялся в системах на базе процессоров Pentium 4/ Celeron и AMD Athlon/Sempron.
□ DDR2. Эта память являет собой дальнейшее развитие технологии DDR: в ней за счет усовершенствования внутренней архитектуры модуля достигается уже четырехкратное увеличение объема передаваемых данных за один такт по сравнению с SDRAM. Память DDR2 используется в системах с процессорными разъемами LGA 775 (Intel Pentium 4, Pentium Dual-Core, Core 2 Duo/Quad и т. п.) и АМ2 (AMD Phenom/Athlon/Sempron).
□ DDR3. Данный стандарт предусматривает передачу уже восьми пакетов данных за такт и используется в компьютерах на базе современных процессоров Intel Core i3/5/7 (LGA 1366/1156) и AMD Phenom II/Athlon II (АМЗ).
Оперативная память выполняется в виде модулей DIMM – небольших плат с несколькими чипами памяти, которые устанавливаются в соответствующие разъемы на системной плате (рис. 1.3). Модули различных типов несовместимы между собой, а их конструкция различается местом расположения ключевого выреза.
Скорость работы оперативной памяти в основном зависит от типа модулей и их тактовой частоты. Эти параметры можно узнать из обозначения модуля, например, модуль памяти DDR2 с частотой 800 МГц обозначается DDR2-800. Вместо тактовой частоты может указываться пропускная способность в Мбайт/с, и тот же модуль DDR2-800 может быть маркирован как РС2-6400 (в большинстве модулей пропускная способность в 80 раз больше тактовой частоты).
Рис. 1.3. Модули памяти DIMM
Шины
Несомненное преимущество ПК – открытая архитектура, позволяющая в широких пределах изменять конфигурацию компьютера, адаптируя его для решения определенных задач. Для этого на системной плате есть периферийная шина с несколькими разъемами, в которые можно вставлять необходимые платы расширения. Существует несколько основных типов шин.
□ ISA (Industry Standard Architecture). Была единственной периферийной шиной для компьютеров 1980-х годов, в 1990-х существовала параллельно с шиной PCI. В современных платах разъемов шины ISA уже нет.
□ PCI (Peripheral Component Interconnect). Разработана в 1992 году компанией Intel для замены медленной шины ISA. Пожалуй, наиболее важное ее преимущество – поддержка технологии Plug and Play, позволяющей автоматически настраивать все подключаемые устройства. Несмотря на почтенный возраст, разъемы этой шины присутствуют и на современных платах.
□ AGP (Accelerated Graphics Port). Скоростной вариант шины PCI, специально оптимизированный для работы видеоадаптера. В современных платах заменен на PCI Express.
□ PCI Express (PCIE). Новая шина, предназначенная для замены шин PCI и AGP. В современных платах шина PCI Express чаще всего используется для подключения видеоадаптеров.
Порты
К портам подключаются периферийные устройства ввода-вывода. Разъемы портов обычно устанавливаются прямо на материнскую плату и выносятся на заднюю панель системного блока. Их также называют интерфейсами.
□ Последовательный порт (СОМ). Устаревший порт для подключения модемов и других устройств. В современных системах используется редко.
□ Параллельный порт (LPT). К нему подключаются некоторые устаревшие модели принтеров, сканеров и другие устройства. В современных системах может отсутствовать.
□ Игровой порт. К нему подключаются устаревшие джойстики, рули и другие игровые манипуляторы. Отсутствует в современных системах.
□ Порт PS/2. В большинстве компьютеров есть два таких специализированных порта: первый – для подключения клавиатуры, второй – для мыши. Если же этот порт всего один или вообще отсутствует, следует использовать клавиатуру или мышь с интерфейсом USB.
□ USB. Наиболее популярный интерфейс для самых разнообразных периферийных устройств. Позволяет подсоединять устройства при включенном питании и автоматически их настраивать. В современных компьютерах имеется несколько разъемов USB на задней, передней или боковой стенке блока.
□ IEEE 1394 (FireWire). Высокоскоростной последовательный порт для цифровых видеоустройств.
□ HDMI (High-Definition Multimedia Interface). Мультимедийный интерфейс для передачи высококачественного цифрового видео и звука.
□ eSATA. Порт для подключения внешних накопителей Serial ATA.
□ Разъемы звукового адаптера. Служат для подключения колонок, микрофона и других аудиоустройств.
□ VGA и/или DVI. Служит для подключения монитора.
□ Ethernet. Используется для подключения к локальным сетям или скоростным модемам.
На рис. 1.4 показана задняя панель типичной системной платы с разъемами портов. Подробнее о настройке портов см. в гл. 9.
Рис. 1.4. Разъемы портов на задней панели системной платы
Жесткие диски
Жесткий диск, или винчестер, – основное средство хранения информации в компьютере. В обычных компьютерах и ноутбуках используются жесткие диски с двумя интерфейсами подключения.
□ IDE, или АТА. Согласно этому интерфейсу жесткие диски подключаются к контроллеру с помощью 40– или 80-жильного шлейфа. К одному шлейфу можно подключить сразу два устройства, но для этого нужно верно выставить перемычки на накопителе (см. гл. 7).
□ Serial АТА, или SATA. Этот интерфейс имеет более высокую скорость, чем АТА. В отличие от IDE, данные передаются последовательно по семижильному кабелю, а накопители конфигурируются автоматически. В современных системных платах обычно присутствует 4-6 SATA-разъемов и 1-2 IDE-разъема.
В серверных системах может также использоваться параллельный интерфейс SCSI (Small Computer System Interface) или его последовательный вариант – SAS (Serial Attached SCSI). Системные платы со встроенной поддержкой SCSI/SAS встречаются очень редко, поэтому для подключения таких дисков нужно установить дополнительный SCSI/SAS-контроллер.
Устройства со сменными носителями
□ Дисководы. Устаревшее средство хранения информации, но иногда оно может еще понадобиться, например, для обновлении BIOS в некоторых платах.
□ Приводы CD и DVD. Компакт-диски и DVD – наиболее популярное средство распространения прикладных программ, игр, фильмов и другой цифровой информации, поэтому практически каждый компьютер оснащается приводом для работы с ними. CD/DVD-приводы подключаются аналогично жестким дискам с помощью интерфейсов IDE или SATA.
□ Устройства на основе flash-памяти. Flash-память – средство хранения данных, которое завоевало широкую популярность благодаря надежности, компактности и удобству использования. Накопители с интерфейсом USB на основе flash-памяти являются хорошей альтернативой CD и DVD.
Системные ресурсы
Современный компьютер состоит из большого количества разнообразных устройств, и для нормальной работы они должны поддерживаться процессором, им нужен доступ к оперативной памяти и возможность обмена данными с периферией. Необходимо также, чтобы устройства не мешали друг другу, что достигается распределением между ними системных ресурсов. Их несколько.
□ Прерывания. С их помощью устройства используют процессор, чтобы обработать возникшие в этих устройствах события. Далее мы рассмотрим распределение прерываний более подробно.
□ Каналы прямого доступа к памяти (DMA). Используются для обмена данными между устройством и оперативной памятью без участия процессора, для чего на системной плате есть специальный контроллер DMA.
□ Порты ввода-вывода. Служат для обмена данными между устройством и процессором.
□ Области оперативной памяти. Они специально выделены для определенного устройства.
В современных системах все ресурсы распределяются автоматически, а вмешательство в этот процесс может понадобиться для подключения очень старого или нестандартного устройства.
Прерывания
В работе компьютера часто возникают ситуации, когда процессору необходимо отложить на время выполнение основной программы и обработать нажатие клавиши на клавиатуре, щелчок кнопкой мыши или другое событие, возникшее в одном из устройств. Для реализации этой задачи используется механизм прерываний. Прерывание (INT) – это приостановка процессором выполнения основной программы для обработки события, поступившего от внешнего устройства. В стандартном компьютере обычно доступны 16 прерываний, которые распределяются следующим образом:
□ 0 – системный таймер;
□ 1 – клавиатура;
□ 2 – контроллер прерываний;
□ 3 и 4 – последовательные порты COM2 и СОМ1;
□ 6 – контроллер дисковода;
□ 7 – параллельный порт;
□ 8 – часы реального времени (RTC);
□ 12 – PS/2-мышь;
□ 13 – математический сопроцессор;
□ 14 и 15 – первичный и вторичный каналы IDE-контроллера.
Прерывания с номерами 5, 9, 10, 11 изначально свободны и могут назначаться любому устройству. Прерывания 3, 4, 6, 7, 12, 14 и 15 в некоторых случаях могут быть переназначены другим устройствам, а прерывания 0, 1, 2, 8 и 13 – системные, и изменить их невозможно.
В современных компьютерах используется так называемый расширенный контроллер прерываний (Advanced Programmable Interrupt Controller, APIC), который разрабатывался для многопроцессорных систем. APIC ускоряет обработку прерываний и увеличивает их количество до 24.
Технология Plug and Play
В старых компьютерах ресурсы для некоторых плат расширения настраивались вручную, при этом нередко возникали конфликты, особенно после установки новой платы расширения. Решить проблему распределения ресурсов позволила технология Plug and Play, которая автоматически конфигурирует подключаемые устройства.
Чтобы воспользоваться всеми преимуществами Plug and Play, необходима поддержка этой технологии со стороны BIOS, операционной системы и подключаемого устройства. На сегодня она полностью применяется как в аппаратном, так и в программном обеспечении, а устройства без ее поддержки – уже редкость.