bannerbanner
Настройки чтения
Размер шрифта
Высота строк
Поля
На страницу:
2 из 2

Свет обеспечивает нас значительным объемом информации о Солнечной системе – нужно только уметь смотреть и видеть, но есть и другие средства, связанные уже с ядерной и радиофизикой.


1.4. Как изучают планеты с помощью радио и радиации

Космическая радиация – это потоки фотонов и других элементарных частиц с очень высокой энергией, которыми наполнено все межзвездное и межпланетное пространство. Это результат излучения звезд, выбросов газопылевых дисков вокруг черных дыр, нейтронных звезд и пульсаров, взрывов сверхновых. Космической радиацией называют гамма-лучи и элементарные частицы: протоны (ядра атомов водорода), нейтроны, альфа- и бета-лучи, рентген, тяжелые заряженные частицы. Практически любой катаклизм во Вселенной является источником космической радиации. Она является проблемой для космонавтов и электроники, но для ученых радиация – подарок, позволяющий узнать много подробностей о космосе.



Гамма-спектроскопия

Гамма-лучи – это высокоэнергичные фотоны, их источником является Солнце и далекие взрывные события в галактике и за ее пределами, но гамма-спектроскопия в планетологии изучает не те лучи, которые выбрасываются из звезд и черных дыр, а те, которыми «фонят» планеты и другие безатмосферные или слабоатмосферные космические тела.


Планеты и астероиды начинают излучать в гамма-диапазоне под воздействием бомбардировки более массивных частиц: высокоэнергетичных протонов, альфа-,бета- лучей и нейтронов. В результате взаимодействия заряженных частиц с грунтом на поверхности небесных тел образуются гамма-лучи. И, как мы помним, каждый химический элемент излучает в своем спектральном диапазоне. То есть нам достаточно провести гамма-спектрометром над поверхностью, чтобы понять из чего она состоит. Но так мы получим только ее химический состав, а вот если к нему добавить информацию, например с инфракрасных спектрометров и с камер видимого диапазона, то можно получить более наглядную картину, включающую геологический состав поверхности.



Так, с помощью гамма-спектрометрии ученые узнали об относительно высоких концентрациях ториевых, железных и титановых руд на Луне. Радиоактивные породы тоже хорошо искать этим методом. С помощью гамма-спектрометра на аппарате Mars Odyssey удалось обнаружить на Марсе два района с аномально высоким содержанием ториевых и, вероятно, урановых руд. Вполне возможно, что там когда-то происходили процессы (как на Земле, в Африке) с образованием естественного атомного реактора. Это обнадеживающая находка означает, что атомные электростанции будущих марсианских поселенцев могут работать на местном сырье.

Нейтронные детекторы

Космические частицы, врезающиеся в грунт безатмосферных тел, выбивают не только фотоны, но и более крупные элементарные частицы, в том числе нейтроны. Выбитые нейтроны движутся через грунт с высокой скоростью и при столкновениях с каждым атомом водорода теряют много энергии. Соответственно, измеряя энергию вылетающих с поверхности нейтронов можно определить, находится ли под ней водород.



Водород – очень летучий газ, который не задерживается в грунте в свободной форме, особенно там, где атмосферное давление стремится к нулю. Чтобы сохранить водород в грунте, его нужно связать на химическом уровне, и лучшим средством для этого остается вода. Таким образом, пролетая над поверхностью и собирая данные о скоростях вылетающих нейтронов, можно определить примерное содержание воды в грунте. Разумеется, чем ниже мы пролетим, тем точнее будут данные.


Нейтронные спектрометры на орбитальных аппаратах пока дают погрешность в сотню километров. Если использовать специальный ограничитель, называемый «коллиматор», то можно повысить точность до десятков километров. Еще для этого метода ограничена глубина зондирования. Все нейтроны вылетают с глубины не ниже 1 метра, поэтому о запасах воды в более глубоких слоях остается только догадываться и полагаться на другие методы исследования.



С помощью российских нейтронных детекторов LEND и HEND, были получены данные о распределении водорода/воды в приповерхностных слоях Луны и Марса. И если марсианские данные уже дважды подтвердились, то лунные еще ждут своей проверки.


На Марсе в приполярный регион высадился посадочный модуль Phoenix, и там, где HEND прогнозировал до 70 % воды в грунте, прямо под пылью нашелся пласт водяного льда. В кратере Гейла, где работает марсоход Curiosity, HEND обещал 5 %, а по данным марсохода содержание воды в грунте колеблется от 3 % до 5 %, и лишь изредка попадаются «оазисы» аж в 6 %.


После такого успеха HEND его российского «брата» DAN «усадили» прямо на марсоход, и он теперь собирает данные не с высоты 300 километров, как предшественник, а гораздо ниже – с полуметра. Правда, глубина зондирования по-прежнему не превышает одного метра, зато пространственное разрешение увеличилось с десятков километров до сантиметров.


Впрочем, несмотря на успехи нейтронных детекторов, окончательного доверия к ним еще нет. Ледники на Луне ждут своего первооткрывателя, а космические агентства, как и частные компании, все больше внимания обращают на ее полюса. Хотя концентрация влаги на Луне, по данным спутников, не превышает 4 %.

Радиолокация

Зондирование планет в радиодиапазоне начали проводить еще с Земли. Много информации смог собрать известный радиотелескоп Аресибо в Пуэрто-Рико, чья параболическая антенна диаметром в 300 метров появлялась во множестве голливудских фильмов. Еще в 80-е годы он обнаружил на полюсах горячего Меркурия странный отблеск, источником которого мог стать водяной лед. Ученые долго не могли поверить в то, что на самой близкой к Солнцу планете могут существовать ледники. Пришлось ждать результатов зонда Messenger, который при помощи нейтронного детектора и лазерной локации смог подтвердить факт наличия льда на полюсах Меркурия.



Впечатляющие картины показал радиотелескоп Аресибо во время суперлуния 2013 г. На Луне с его помощью удалось разглядеть последствия катастрофических лавовых потоков и «наводнений». Если совместить эти снимки с картами распределения минералов, полученных с орбитальных спектрометров, то можно составить подробную геологическую карту местности и, возможно, реконструировать эволюцию поверхности Луны. К ней неоднократно отправляли радары на спутниках, но их энергии было недостаточно, чтобы проникнуть глубоко в грунт.


Радиоволны позволяют не только заглядывать под поверхность планет и спутников, но и показывают высокую эффективность на облачных планетах. Три радара летало к Венере. «Венера-15» и «Венера-16» провели картографирование северного полюса в 80-е годы, а потом, в 90-е, Magellan составил почти полную его карту.



Аппарат Cassini на орбите Сатурна использовал свой радарный инструмент, чтобы проникнуть сквозь плотную атмосферу его спутника Титана. В ходе многочисленных пролетов космическая станция Cassini постепенно приоткрывала вечную пелену атмосферы и открывала науке этот поистине удивительный мир, в чем-то невероятно похожий на земной, а в чем-то разительно от него отличающийся. Многократная радарная съемка позволила не просто картографировать Титан, но и наблюдать динамические процессы на нем. Так, таинственно появившийся, а потом исчезнувший остров, сочли признаком происходящих сезонных изменений на самом крупном спутнике Сатурна. Возможно, это был ледяной айсберг, обрушившийся в метановое море.


Другие диапазоны радиоволн и другая конструкция радара позволяют забираться гораздо глубже. На орбите Марса работают два космических аппарата, оборудованные радарами, чьи волны проникают в кору планеты на 1–3 километра.



Исследование европейского космического аппарата Mars Express позволило получить информацию о мощности и структуре полярных льдов и оценить запасы воды на полюсах Марса. Его же сканирование позволило обнаружить древние астероидные кратеры, погребенные под сотнями метров вулканической лавы и осадочными накоплениями марсианского океана в северном полушарии планеты. Ранее ученые неоднократно отмечали видимую разницу в количестве метеоритных кратеров в южном и северном полушариях Марса, и Mars Express позволил разгадать эту загадку. А если бы на «Красной планете» существовали марсиане, зарывшиеся от вакуума, засухи и мороза в подмарсианский город-убежище, то Mars Express нашел бы его.


Радар привезли даже на поверхность Луны. Китайский луноход Yutu («Нефритовый заяц») успел пройти всего сотню метров, но даже во время такого короткого пути ему удалось получить интереснейшие профили лунной поверхности на глубину около четырехсот метров. В будущем такая информация будет жизненно необходима для строительства лунной станции, базы или поселения.

Альфа-лучевая и рентгенофлоуресцентная спектроскопия

Когда дело доходит до исследования космических тел посадочными аппаратами, практически невозможно обойтись без трогательных – в прямом смысле – моментов альфа-лучевой рентгенофлоуресцентной спектроскопии.



Приборы типа APXS (Alpha Particle X-Ray Spectrometer) устанавливались на все марсоходы NASA. APXS имеется на посадочном аппарате Philae на ядре кометы 67P/Чурюмова-Герасименко. На советских луноходах был установлен похожий прибор – РИФМА. Принцип работы метода напоминает гамма-спектроскопию, за тем исключением, что датчик имеет свой собственный источник заряженных частиц (какой-нибудь радиоактивный материал), прежде всего альфа-лучей. Заряженными частицами бомбардируется исследуемый образец, в ходе процессов поглощения альфа-частиц ядрами атомов выделяется рентгеновское излучение. Для каждого химического элемента спектр излучения будет свой, что позволяет определять химический состав образца.


Это далеко не исчерпывающий обзор оборудования для исследования Солнечной системы. Как правило, на межпланетные аппараты ставятся и астрофизические приборы для регистрации энергичных частиц, межпланетной радиации, плазмы и пыли. Межпланетные перелеты позволяют изучать еще и космическое пространство, взаимосвязи Солнца, планет и межзвездной среды, но это уже другая история.

Конец ознакомительного фрагмента.

Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

Конец ознакомительного фрагмента
Купить и скачать всю книгу
На страницу:
2 из 2