Полная версия
Электричество дома и на даче. Как сделать просто и надежно
Величина и направление индуктированной в проводнике эдс зависят от нескольких факторов:
• количества силовых линий поля, пересекающих проводник в единицу времени;
• скорости движения проводника в магнитном поле;
• длины той части проводника, которая пересекается силовыми линиями поля;
• силы самого магнитного поля.
Следует помнить, что в проводнике, перемещающемся в магнитном поле, эдс индукции возникает только в том случае, если этот проводник пересекается магнитными силовыми линиями поля. Если же проводник перемещается вдоль силовых линий поля, т. е. не пересекает, а как бы скользит по ним, то никакой эдс в нем не индуктируется.
Индукционный ток, так же как и любой другой, имеет энергию. Значит, в случае возникновения индукционного тока появляется электрическая энергия. Согласно закону сохранения и превращения энергии, вышеназванная энергия может возникнуть только за счет количества энергии какого-либо другого вида энергии.
Помимо индукции, в проводнике, по которому течет ток, возникает явление так называемой самоиндукции. Дело в том, что проводник с текущим по нему током обладает собственным магнитным полем, которое меняется при изменении силы тока. А если изменяется магнитный поток, проходящий через катушку, то в ней возникает электродвижущая сила, которая называется эдс самоиндукции.
Эдс самоиндукции при замыкании цепи препятствует силе тока и не дает ей возрастать. При выключении цепи эдс самоиндукции, наоборот, противодействует снижению силы тока. В том случае, когда сила тока в проводнике достигает определенного постоянного значения, магнитное поле перестает изменяться и эдс самоиндукции приобретает нулевое значение.
Как говорилось выше, для создания в проводнике эдс индукции необходимо перемещать в магнитном поле или сам проводник, или магнитное поле около проводника. В том и другом случае проводник должен пересекаться магнитными силовыми линиями поля, иначе эдс индуктироваться не будет. Индуктированную эдс, а следовательно, и индукционный ток можно получить не только в прямолинейном проводнике, но и в проводнике, свитом в катушку, что позволяет в значительной степени увеличить его длину и количество участков, одновременно пересекающих силовые линии.
Таким образом, при движении внутри катушки постоянного магнита в ней индуктируется эдс за счет того, что магнитный поток магнита пересекает витки катушки, т. е. точно так же, как это было при движении прямолинейного проводника в поле магнита.
Работа и мошность электрического тока
Из вышесказанного понятно, что электрический ток совершает определенную работу. При подключении электродвигателей электроток заставляет работать всевозможное оборудование, двигает по рельсам поезда, освещает улицы, обогревает жилище, а также производит химическое воздействие, т. е. позволяет выполнять электролиз и т. д. Можно сказать, что работа тока на определенном участке цепи равна произведению силы тока, напряжения и времени, в течение которого совершалась работа. Работа измеряется в джоулях, напряжение – в вольтах, сила тока – в амперах, время – в секундах. В связи с этим 1 Дж = 1 В × 1 А × 1 с. Из этого получается, для того чтобы измерить работу электрического тока, следует задействовать сразу три прибора: амперметр, вольтметр и часы. Но это громоздко и малоэффективно. Поэтому обычно работу электрического тока замеряют электрическими счетчиками. В устройстве данного прибора имеются все вышеназванные приборы.
Мощность электрического тока равна отношению работы тока ко времени, в течение которого она совершалась. Мощность обозначается буквой Р и выражается в ваттах (Вт). На практике используют киловатты, мегаватты, гектоватты и пр. Для того чтобы замерить мощность цепи, нужно взять ваттметр. Электротехники работу тока выражают в киловатт-часах (кВтч).
Открытия Ома имели огромное значение как для развития учения об электричестве, так и для развития прикладной электротехники. Они позволили легко предсказывать свойства электрических цепей для постоянного тока, а впоследствии – для переменного.
Закон Джоуля – Ленца. Электрический ток в любом участке цепи выполняет определенную работу. Для примера возьмем какой-либо участок цепи, между концами которого имеется напряжение (U). По определению электрического напряжения, работа, совершаемая при перемещении единицы заряда между двумя точками, равна U. Если сила тока на данном участке цепи равна I, то за время t пройдет заряд It, и поэтому работа электрического тока в этом участке
А = Ult.
Это выражение справедливо для постоянного тока в любом случае, для какого угодно участка цепи, который может содержать проводники, электромоторы и пр. Мощность тока, т. е. работа в единицу времени, равна:
Р = A/t = UI.
Эту формулу применяют в системе СИ для определения единицы напряжения.
Предположим, что участок цепи представляет собой неподвижный проводник. В этом случае вся работа превратится в тепло, которое выделится в этом проводнике. Если проводник однородный и подчиняется закону Ома (сюда относятся все металлы и электролиты), то
U = IR,
где R – сопротивление проводника. В таком случае
А = TR2I.
Этот закон впервые опытным путем вывел Э. Ленц и, независимо от него, Джоуль.
Следует отметить, что нагревание проводника при прохождении в нем тока находит многочисленное применение в технике. Самое распространенное и важное среди них – осветительные лампы накаливания.
Электрические цепи и их элементы
Электрическая цепь представляет собой совокупность устройств, связанных между собой проводниками и образующих путь для электрического тока. При этом электромагнитные процессы в цепях описываются с помощью понятий об электродвижущей силе, токе и напряжении.
Отдельные устройства электрической цепи по их назначению можно разделить на три группы. Первую группу составляют элементы, предназначенные для выработки электроэнергии (источники питания). Вторая группа – элементы, преобразующие электроэнергию в другие виды энергии (механическую, тепловую, световую, химическую и т. д.). Эти элементы называются приемниками электрической энергии (электроприемниками). В третью группу входят элементы, предназначенные для передачи электроэнергии от источника питания к электроприемнику (провода, устройства, обеспечивающие уровень и качество напряжения, и др.).
Источники питания цепи постоянного тока – это гальванические элементы, электрические аккумуляторы, электромеханические генераторы, термоэлектрические генераторы, фотоэлементы и др. Все источники питания имеют внутреннее сопротивление, значение которого невелико по сравнению с сопротивлением других элементов электрической цепи.
Электроприемниками постоянного тока являются электродвигатели, преобразующие электрическую энергию в механическую, нагревательные и осветительные приборы и др. Все электроприемники характеризуются электрическими параметрами, среди которых можно назвать самые основные – напряжение и мощность. Для нормальной работы электроприемника на его зажимах (клеммах) необходимо поддерживать номинальное напряжение. Для приемников постоянного тока оно составляет 27, 110, 220, 440 В, а также 6, 12, 24, 36 В.
Графическое изображение электрической цепи, содержащее условные обозначения ее элементов и показывающее соединения этих элементов, называется схемой электрической цепи.
Условные обозначения в электросхемах
Участок электроцепи, вдоль которого протекает один и тот же ток, называется ветвью. Место соединения ветвей электроцепи называется узлом. На электросхемах узел обозначается точкой. Любой замкнутый путь, проходящий по нескольким ветвям, называется контуром электрической цепи. Простейшая электрическая цепь имеет одноконтурную схему, сложные электрические цепи – несколько контуров.
Элементами электрической цепи являются различные электротехнические устройства, которые могут работать в различных режимах. Режимы работы как отдельных элементов, так и всей электрической цепи характеризуются значениями тока и напряжения. Поскольку ток и напряжение в общем случае могут принимать любые значения, то режимов может быть бесчисленное множество.
Режим холостого хода – это режим, при котором тока в цепи нет. Такая ситуация может возникнуть при разрыве цепи. Номинальный режим бывает, когда источник питания или любой другой элемент цепи работает при значениях тока, напряжения и мощности, указанных в паспорте данного электротехнического устройства. Эти значения соответствуют самым оптимальным условиям работы устройства с точки зрения экономичности, надежности, долговечности и пр.
Режим короткого замыкания – это режим, когда сопротивление приемника равно нулю, что соответствует соединению положительного и отрицательного зажимов источника питания с нулевым сопротивлением. Ток короткого замыкания может достигать больших значений, во много раз превышая номинальный ток. Поэтому режим короткого замыкания для большинства электроустановок является аварийным.
Согласованный режим источника питания и внешней цепи возникает в том случае, когда сопротивление внешней цепи равно внутреннему сопротивлению. В этом случае ток в цепи в 2 раза меньше тока короткого замыкания.
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.