bannerbanner
Поля и вихроны. Структуры мироздания Вселенной. Третье издание
Поля и вихроны. Структуры мироздания Вселенной. Третье издание

Полная версия

Поля и вихроны. Структуры мироздания Вселенной. Третье издание

Настройки чтения
Размер шрифта
Высота строк
Поля
На страницу:
16 из 19

Рождение электронов и позитронов возможно не только с помощью фотонов в поле атомного ядра. В основном, эти частицы появляются в результате распада атомных и нейтральных ядер в аналогичном поле, в том числе при распаде нейтронов (фото 2.17). В этом случае электроны образуются в результате последующих распадов внешней оболочки, состоящей из двух противоположно-заряженных замкнутых оболочек-волноводов частиц со структурой типа мюонов, в поле ядра. Внешняя оболочка нейтрона состоит из пары взаимодействующих частиц, образующих составную частицу типа нейтрального мезона. При распаде нейтрона, отрицательная часть этой пары отбрасывается и образует промежуточную частицу, которая нестабильна и распадается с образованием электрона и антинейтрино (часть волновод старой внешней оболочки без магнитного заряда). А так как его частота уже (часть энергии идёт на вылет движения антинейтрино) существенно меньше материнского вихрона, то он строит новую оболочку. Теперь эта оболочка-волновод представляет собой полусферу электрона, соответствующую своей формой новым параметрам полярного дочернего вихрона. При этом, радиус волновода полусферы (фото 2.17) электрона увеличивается на три десятичных порядка по сравнению с внутренними оболочками протона и составляет величину 1,2 х 10—10 см.


Фото 2.17. Распад нейтрона


Итак, пульсации ГЭММ, как взаимная непрерывная и периодическая индукция-регенерация двух монополей в замкнутом волноводе, носит бесконечный во времени процесс, вызванный сходящимся вращением и увеличивающимся значением магнитного монополя по спирали волновода зёрен-электропотенциалов форме полусферы, в центре поверхности которой он исчезает, заряжая и переходя в сферу гравитационного монополя. В этой точке, перед тем как произойдёт такой квантовый переход, концентрируются одна в одной две изменяющиеся сферы-зарядов максимальных значений этих монополей. Схему процессов в фазовом замкнутом объёме электрона можно также представить, как периодическая зарядка сферы магнитного заряда на пути создания им внешнего пространственного четверть-волновода электропотенциалов и одновременная зарядка сферы вторичного гравитационного монополя. Затем опять следует разрядка сферы вращением гравитационного заряда с построением пространственного внутреннего волновода гравпотенциалов и опять последующей индукции магнитного заряда – это основной закон природы для гравимагнитного отношения, как для микрочастиц, так и для ядер планет, звёзд и галактик.

Зёрна-потенциалы – это соответственно заряженные бесструктурные микрообъёмы-зёрна дискретного пространства с эффективным размером много меньшим 10—28 – 10—33 см и цветом, характеризующим статическое поле заряженного электрического, магнитного или гравитационного источника.

Для наглядности проиллюстрируем сказанное графическими схемами фазового объёма электрона и позитрона, его возможных состояний. На Фото 2.5 приведены схемы рождения электрона и позитрона, его электрических потенциалов-зерен на волноводах и магнитного поля. Структура размещения гравитационных потенциалов в сфере гравитационного монополя заполняется в полной аналогии, как и в сфере магнитного монополя. Производство внешнего поля электрического заряда электрона производится обновлением контура волновода из электрических зёрен-потенциалов магнитным монополем, при котором старый волновод отбрасывается в пространство. Этот процесс происходит с частотой 1020 Гц и рождает внешнее электрическое поле электрона. Таким же образом происходит создание его внешнего гравитационного поля, которое взаимодействуя с полем тяготения Земли, проявляет у электрона свойства заряда массы.

Таким образом, проявление эффекта электрического заряда и заряда массы электрона обусловлено излучением пульсирующих кластеров четверть-волноводов из электрических и гравитационных зёрен-потенциалов в форме спиралей, и обновляемых движущимся всегда на зарядку в одном направлении полярным магнитным монополем. Точечных в состоянии покоя и бесструктурных разнополярных электрических и магнитных зарядов, как одной из форм существующей материи – нет в природе, как нет и бесструктурных гравитационных зарядов.

Сверхсветовое вращение (зарядка) с переменным центростремительным ускорением магнитного заряда по волноводу в замкнутом фазовом пространстве электрона индуктирует в нем определенные инертные свойства, присущее всем механическим гироскопам – это и есть инертность, ось и гравитационная масса покоя. Источник индукции векторной гравитационной массы – это вращающийся магнитный монополь без массы – источник заряда энергии. В центре полусферы волновода магнитный монополь исчезает, но появляется полностью заряженный гравитационный монополь.

Собственный неполно-квантовый переход магнитного заряда в фазовом объёме электрона проявляет внешнее свойство называемое спином, т. е. неполную единицу заряда электромагнитного колебательно-вращательного движения. Полярный вихрон электрона своим фермионным магнитным монополем формирует половину такого заряда, т. е. половину постоянной Планка. Спин можно определить ещё как маленький магнит с двумя полюсами. Тогда электрон можно представить как периодическое вращательно-поступательное движение магнитного монополя в одном направлении по сходящейся в одну точку спирали, что и эквивалентно такому элементарному магниту. Внешнее электрическое поле, образованное пульсирующими зёрнами-потенциалами внешнего волновода, снаружи воспринимается, как поле электрического заряда, размещённого в центре полусферы под волноводами, хотя на самом деле его там нет.

Возникает вопрос: – почему электрический заряд электрона и протона одинаков и противоположен, несмотря на такую большую разницу в размерах волноводов?

Это связано с плотностью размещения зёрен-потенциалов на соответствующей полусфере. Суммарный поток-кластер-квант потенциалов-зёрен на поверхности полусферы любого радиуса от виртуального заряда, размещённого в центре поверхности этих полусфер для этих микрочастиц, везде одинаков и соответствует минимально возможному и равному заряду электрона или позитрона.

Образование атомов водорода становится возможным только тогда, когда дебройлевские размеры длины волны вторичных микровихронов становятся одинаковыми, как для электрона, так и для протона. При движения электрона его волновод становится излучательной антенной для притяжения протонов. При тепловых скоростях происходят рекомбинации с протоном, и волновод электрона превращается в часть атомной оболочки с длиной волны 10—4 – 10—8 см и образует одну из разрешенных оболочек общей системы, т. е. замкнутого и возбуждённого микропространства атома, фото 2.18. Это очень сложный пороговый процесс, обусловленный, как и в случае рождения пары в поле атомного ядра, процессом торможения соответствующего магнитного заряда в дебройлевском вторичном микровихроне с образованием гравитационного заряда покоя и последующего слияния с аналогичным гравитационным монополем протона при рождении новой микрочастицы – атома. При этом происходит изменение размера и формы волноводов электрона на данной энергетической оболочке атома – обычно всегда возбуждённой. Переход в основное состояние атома сопровождается всегда излучением фотона.


Фото 2.18. Связанный с ядром электрон – атомная оболочка протона


Так для плазмы водорода, находящейся в атмосфере Солнца, его электроны находятся уже в таком связанном состоянии даже при температурах от 2200о С до 5000º С, а в холоде и вакууме космоса ридберговский атом водорода с «n» равным или более 100 может существовать также бесконечно долго, как и атом водорода с «n» равным единице на поверхности Земли. Эта причина препятствует, наряду с названным барьерным дефицитом энергии, захвату этого электрона протоном – это фундаментальное явление, в результате которого образовались всё атомно-молекулярное вещество на поверхности Земли. Однако обратный процесс становится всё же возможным, но только для мюонов, у которых этот размер соизмерим с внешними оболочками протона.

Отсюда следует немаловажный вывод – отсутствие необходимости привлечения механизма орбитального движения электронов в атомах вокруг ядер.

И здесь самый главный вывод о том, что производство атомно-молекулярного вещества происходит только в сильных гравитационных поясах планет, а не в космическом вакууме вдали от тяготеющих источников.

Изменения движения, структуры и энергии электрона при увеличении скорости на ускорителях и коллайдерах.

БЭПК (LEP) входил в состав ускорительного комплекса научно-исследовательского центра Европейского совета ядерных исследований (Conseil Européen pour la Recherche Nucléaire, CERN). Он был размещен в кольцевом тоннеле длинной 26,659 км, который проходил на глубине от 50-ти до 175-и метров (в зависимости от рельефа местности), на территории Швейцарии и Франции. БЭПК планировался как фабрика Z0-бозонов и машина для рождения пар W+W-бозонов. В первые годы эксплуатации LEP, a суммарная энергия сталкивающихся е+е- пучков в системе центра масс была подобрана таким образом, чтобы примерно равняться массе Z0-бозона. В этом случае, вследствие резонансного эффекта, вероятность рождения данной частицы возрастает в тысячи раз по сравнению с вероятностью ее рождения на энергиях в два или даже десять раз больших, чем масса Z0. Пары W+W- бозонов могут создаваться при энергии примерно в два раза большей, чем энергия резонансного рождения Z0-бозона. Массы нейтрального и заряженных переносчиков электрослабого взаимодействия примерно равны, но пары W-бозонов рождаются нерезонансно. С 1989-го по 1995-й год БЭПК работал в режиме фабрики Z0-бозонов, а в дальнейшем – как машина для рождения пар W+W-бозонов, причем энергия сталкивающихся е+е- пучков постоянно увеличивалась. Рекорд был установлен в конце 2000-го года во время поиска бозона Хиггса и составил 208 ГэВ в системе центра масс сталкивающихся частиц. Это осуществлялось в последнем кольце коллайдера БЭПК путём основного ускорения е+е- пучков с 20 ГэВ до 104 ГэВ и получении в центре масс энергии 208 ГэВ при светимости 9,73×1031 см-2с-1.

Для ускорения пучков до номинальных энергий в основном кольце использовалась ВЧ ускоряющая система. Частицы с разными знаками зарядов ускоряются поэтапно в разных фазах электромагнитного поля в стоячей и на бегущей волне, и пространственно разведены в кольце.

Сверхпроводящие (СП) резонаторы работали на частоте 352 МГц. Частицы проходят зазор резонатора в нарастающем электрическом поле, что обеспечивает ускорение и автофазировку частиц. Активная длина каждого СП резонатора составляла 1,7 м (что соответствовало двум длинам волн ВЧ поля). ВЧ система располагалась на длинных прямых участках кольца коллайдера. У коллайдера БЭПК (LEP) максимальное ускоряющее круговое напряжение равно 3560 МВ.

Вплоть до настоящего времени расчёт185 увеличения энергии электронов за счёт их разгона в электрическом поле идёт по формулам СТО А. Эйнштейна, т.е. релятивистский эффект зависимости массы частицы от скорости. Это грубая ошибка вызвана тем, что в природе нет никакой массы – ни массы покоя, ни релятивистской массы в СТО. А физические процессы увеличения массы даются лишь на веру математическими формулами Лоренца, не имея под собой никакого физического обоснования, в том числе определения массы, как физической категории. Таким образом, нарушается основной классический принцип познания законов природы на основе экспериментов, а не из математики по Геделю.

Реально увеличение скорости движения электрически заряженной частицы с её собственным полем во внешнем поле другого источника с полем противоположного поля идёт поэтапно (фото 2.19) и очень сложным образом:

– вначале электрон ускоряется силой притяжения поля другого источника с противоположным знаком путём аннигиляции частиц поля в образовавшихся зонах холодной безмассовой плазмы (силовые линии поля) до предела световой скорости (v- 0,98—0,99с, при Е- 2—4 Мэв),

– такой процесс с увеличением заряда собственной энергии электрона происходит плавно вплоть до первого квантового перехода в мюон, у которого уже собственное гравитационное поле в 207 раз больше, чем у электрона, появляется нестабильность структуры с периодом полураспада в 2,2 х 10 -6 секунды, этот заряд увеличивается за счёт увеличения частоты пульсации магнитного монополя ГЭММ,

– затем подобные процессы повторяются и с мюоном, вплоть до рождения частиц типа тау-лептонов,

– так порождаются нестабильные заряженные частицы с собственным полем и полуцелым спином, которые вместе со своими продуктами распада и регистрируются в детекторах,

– в точках столкновения с мишенью или продуктами встречного пучка


Фото 2.19. Столкновение полей-микропространств лептонов и бозонов в плоскости чёрной линии.


противоположного знака заряда в коллайдерах происходят взаимодействия четверть-волноводов собственного излучения бозонов и лептонов с образованием зон холодной безмассовой плазмы, в которой и порождаются нейтроны, протоны-антипротоны путем осевой имплозии, переходящей сгустками в центральную имплозию, где и происходит упорядоченная центральная конденсация разных магнитных монополей в соответствующие пары оболочек, образуя центральную структуру нейтрон-антинейтрон.

Итак, полная энергия складывается из энергии движения, переданной частице ускоряемым внешним переменным электрическим полем в электронвольтах (эВ, Кэв, Мэв, Гэв) и внутренней энергии при квантовом переходе в мюон, а расчёт и изменение внутренней энергии заряженной одноконтурной частицы идёт по формуле Планка, т.е. произведением его фундаментальной константы на частоту излучения четверть-волноводов магнитным монополем ГЭММ. Ускоряясь в электрическом поле, электрон поэтапно превращается в мюон, частицы типа тау-лептон, и т.д., а при встречных соударениях с аналогичными продуктами ускоренных позитронов путём осевой имплозии, переходящей сгустками в центральную имплозию (– в частицы типа мезонов), и рождаются нейтроны, протоны-антипротоны.

С ростом энергии электрона происходят процессы обратные переходу возбуждённого атома в основное, т.е. укорачивается длина четверть волновода, увеличивается частота пульсаций магнитного монополя в ГЭММ.

При регистрации продуктов столкновения следует учитывать период полураспада мюонов, тау-лептонов, мезонов, которые в свою очередь смазывают картину в детекторах, регистрацией их продуктов распада – тех же электронов, фотонов и многих других.

Аннигиляция электрона и позитрона (Фото 2.20) происходит следующим образом.


Фото 2.20. Аннигиляция пары электрон-позитрон


Охлажденные свободные электрон и позитрон, фокусируясь внешними электрическими полями, сближаются и соединяются своими волноводами, взаимно нейтрализуя холодной безмассовой плазмой противоположно заряженные зёрна-потенциалы волноводов, т. е. запирающие электрические поля. Образуется промежуточное состояние, называемое пара-позитроний со спином равным нулю. Это состояние имеет форму фазового пространства π-ноль мезона (спин равен нулю), поэтому распад идет в основном по каналу испускания двух квантов с энергией 511 Кэв. Или другими словами, освободившиеся монополи, вылетая из микропространства промежуточного состояния со структурой типа π-ноль мезона, формируют свободные фазовые пространства двух самодвижущихся фотонов с частотой первичных вихронов электрона и позитрона – элементарный акт дезинтеграции энергии покоя в форму движения со скоростью света.

В таком процессе противоположные по знаку монополи освобождаются от запирающих их замкнутых контуров электрических полей и становятся свободными. Исчезает замкнутое движение гравитационного монополя и сменяется на свободное движение вихрона.

2.4. Мюоны

Мюоны – это промежуточные состояния распадающихся микрочастиц, входящих в состав ядерных оболочек. Мюоны имеют в системе СИ электрический заряд со спином ћ/2, время жизни 2,2 х 10—6 с и массу в ~207 раз больше массы покоя электрона, т. е. 105,66 Мэв. Структура и механизм индукции массы аналогичен процессам, происходящих в электроне. Абсолютное значение электрического заряда соответствует заряду электрона и позитрона. Структуры микрочастиц типа электрона-позитрона и мюонов – это основные половины одноконтурных структур, образующие оболочки атомов и ядер, способные уже, в отличие от мезонов и трёхконтурных нейтронов, существовать самостоятельно от связей в ядре со спином 1/2 более длительное время. В процессах распада мюонов рождаются электроны, позитроны и сопровождающие его соответствующие нейтрино и антинейтрино. Комптоновская длина волны мюонов в 207 раз меньше, чем у электронов, но в 10 раз больше чем у нейтронов. Дебройлевская длина волны тепловых мюонов соизмерима с аналогичным параметром внешних оболочек тепловых протонов, поэтому процесс захвата ими мюонов идёт легко с образованием малых по размеру мезоатомов, отличных по свойствам от атомов водорода.

Основными источниками производства мюонов в природе являются жёсткие процессы, которые происходят при столкновениях солнечных высокоэнергетических протонов с ядрами атомов газов, наполняющих атмосферу. Механизм производства – возбуждение ударом и ионизация ядерных частиц (типа мезонов), образующих оболочки ядер атомов и последующий их распад в более долгоживущие частицы с тем же спином, т. е. в мюоны со знаком плюс и минус.

Другие процессы, приводящие, в конечном итоге, к мюонам – это рождения пар – мюонов фотонами высоких энергий в верхних слоях атмосферы, а также в мантии Земли при распаде ядер. На уровне моря мюоны образуют основную компоненту до 80% от всех частиц космического излучения. Мюоны регистрируют в глубине мощных слоёв континентальной поверхности Земли. В подземных экспериментах мюоны регистрируются на глубине в несколько километров. Находясь в плотных слоях грунтов континентов, мюоны захватываются ядрами атомов на возбуждённые орбиты мезоатомов, затем следует каскадный переход на К-оболочку этого мезоатома и последующий ядерный захват мюона, приводящий к соответствующей ядерной реакции. Экспериментальные данные показывают в САП, что во всех известных взаимодействиях мюоны проявляют себя также как электроны и позитроны, отличаясь от них лишь массой – реально энергией ГЭММ, т.е. частотой пульсаций разрядки-зарядки.

Мюо́ний – это водородоподобный мюонный атом, в качестве ядра которого выступает положительный мюон, а электронное облако мюония состоит из одного электрона. Согласно САП масса мюония и его радиус первой боровской орбиты близки к соответствующим величинам для атома водорода, поскольку массы как мюона, так и протона значительно превышают массу электрона (в 207 и 1836 раз, соответственно). Поэтому химически мюоний ведёт себя подобно атомарному водороду и может рассматриваться как его сверхлёгкий изотоп. Время жизни этого атома очень мало (мюон нестабилен и распадается в среднем за 2,2 мкс). Хотя время жизни мюона невелико, мюоний успевает образовать химические соединения, например хлорид мюония и мюонид натрия, существующие лишь в виде одиночных молекул. Мюоний образуется, когда положительный мюон тормозится и останавливается в веществе, захватив электрон из окружающей среды. Мюоний следует отличать от мюонных атомов мезоатомов, которые возникают при захвате обычным атомом отрицательного мюона на орбиту вокруг ядра.

По этой причине мюоны можно рассматривать как «тяжелые» электроны, которые заменяют последних при образовании мюонных веществ и минералов в плотных слоях мантии, где практически отсутствует свободное пространство и всякое поступательно-колебательное движение ядер атомов. Энергетически тепловое проявление таких процессов выражается лишь вращением (рождением ротонов) вокруг собственной оси. Поэтому распад нейтральных ядер и нейтронов идет с образованием заряженных ядер и мюонов. Электроны, имеющие размер в 207 раз больше мюонов, не способны образоваться в условиях даже верхней мантии.

Главное. Такие системы, а также системы мюония и мюонного атома позволяют детально экспериментально изучать как структуру и свойства атомных оболочек, так структуру и свойства ядерных оболочек.

Для исследований конденсированного состояния вещества с помощью мюонов и мезонов построены мезонные фабрики-ускорители для получения пучков высокой интенсивности.

Свойства мюонов достаточно полно изучены, а в особенности при исследованиях явлений мюонного катализа186, т. е. холодного синтеза ядер изотопов водорода при катализном участии отрицательных мюонов с образованием нейтронов и изотопов гелия, и выделением значительной энергии 17,6 Мэв, а за время жизни мюона – 2,5 Гэв. Физическая картина мюонного катализа ядерных реакций – практически значимого физического явления холодного ядерного синтеза – выглядит очень просто и состоит в следующем. Находящийся в водородной среде, содержащей ядра изотопы дейтерия и трития, свободный мюон образует сначала мюонный атом, а затем и мезомолекулярный ион. То есть в этом процессе образуется сначала мезоатомный тритон, а затем мезомолекулярный дейтерий-тритиевый ион. На фото 2.21 (вверху) ядро трития, соединяясь с мюоном (расположен посередине), превращается в мезоатом, размеры которого в семь раз больше его ядра. Далее взаимодействуют два противоположных электрических заряда мюона и дейтрона (фото 2.21, внизу). Мезоатом поглощает своим объёмом очень маленькое по сравнению с ним ядро дейтрона. Ядра трития и дейтрона объединяются таким образом, что начинают взаимодействовать их внешние вихроны. Между этими вихронами идёт соответствующая ядерная реакция синтеза, т. е. слияние магнитного монополя внешней оболочки трития с магнитным монополем внешней оболочки дейтерия (посредством и законами слияния монополей одного знака) с выделением 17,6 Мэв и образованием продуктов реакции в форме альфа-частицы и нейтрона. При этом происходит освобождение мюона и цепочка описанных превращений повторяется до момента распада мюона. Как проверено практикой, число таких актов может доходить до 150 с выделением суммарной энергии около 2500 Мэв. Однако основная проблема применения такого процесса связана с источником мюонов. Для создания необходимых мюонов и их рабочих параметров необходимы установки соизмеримые по энергозатратам с вырабатываемой в этом процессе.


Фото 2.21. Захват зонтиком волновода мюона (посередине) ядра трития (слева) с образованием нейтрального мезоатома тритона, который затем захватывает дейтрон (справа) с рождением дейтерий-тритиевого мезомолекулярного иона (внизу слева в возбуждённом состоянии) и с последующим вылетом продуктов реакции – нейтрона (внизу справа) и альфа-частицы.


Решение этой проблемы187 было найдено в последние годы в рамках пионерских работ по холодному ядерному синтезу (LENR). Поэтому и практический интерес к мюонному катализу диктуется лёгкостью получения ядерных частиц со структурой мюонов в таком процессе, способных в конденсированных средах (жидкость, металл) на специальных электроразрядных установках производить тепловую и электрическую энергию. И это реально сделать даже на установке188 А. В. Вачаева «Энергонива-2» и реакторе С. В. Адаменко. Именно в условиях работы этих установок рождается достаточный поток в режиме ионизации частиц-структур типа мюонов, входящих в состав ядерных оболочек со структурой мезонов, плазмоидом в протекающем потоке воды (конвертор) или в кристаллической решётке меди анода Адаменко. При очень низких энергозатратах идут ядерные реакции, но не с рождением нейтронов189 и гелия, а с рождением ядер других стабильных химических элементов в том числе дейтерия и трития в воде.

На страницу:
16 из 19

Другие книги автора