Полная версия
Математический календарь. 2019 год
Математический календарь
2019 год
Ирина Краева
Математикой можно заниматься, не спрашивая разрешения.
© Ирина Краева, 2022
ISBN 978-5-4493-5796-0
Создано в интеллектуальной издательской системе Ridero
К моему великому сожалению и такому же великому стыду я не помню автора замечательного изречения, вынесенного мною в эпиграф к этой книге. Однако оно как никакое другое точно объясняет причины, по которым мне – вот уже несколько лет – хочется создавать эту книгу – математический календарь.
ПРЕДИСЛОВИЕ
В канун текущего 2018 года у меня возникла идея сделать новогодний подарок студентам и преподавателям математического факультета Пермского педагогического вуза. Так появилась тоненькая, но необычайно информативная книжечка – «Математический календарь». Суть его в том, что любую дату (хорошо, почти любую) можно трактовать с точки зрения числовых свойств и особенностей. И тогда такой дате «присваивается» название-праздник.
В настоящий момент в культурном пространстве человечества существует только три общеизвестных математических праздника – Всемирный день математики, международный день числа π (пи) и Международный день математика. Но даже они не имеют официального статуса.
Мир математики необъятен и величав. Каждый её «житель» – личности с характерами. Число, фигура, функция… словом, все абстрактные модели, имеют необычайно занимательные параметры: свойства, признаки, взаимодействующие между собой отношения и прочие закономерности.
Порой кажется, что всё уже и так известно. Ну да, известно много чего. Но ещё больше – не известно! А узнать хочется…
Для того чтобы познавать что-либо, надо владеть необходимым инструментом, освоение которого порой затягивается на годы и десятилетия. Как сократить время, отведённое на постижение методов познания?
Во-первых, начать как можно раньше.
Во-вторых, тренироваться в использовании этих методов в самых разных условиях. Кстати, в конце предыдущего выпуска математического календаря дан пример исследовательского практикума, по аналогии с которым педагоги могут организовать исследовательский мини-проект.
Речь шла о поиске дат 2018 года, при записи которых в виде пятизначного или шестизначного числа (день—месяц—две последние цифры года), последнее будет кратно 9.
Выбор делителя обоснован следующими соображениями:
– очевидно, что все числа, соответствующие датам 2018 года, записанные требуемым образом, будут чётными, но не кратными 4, а, следовательно, и 8, а также не будут делиться на 5;
– для кратности такого числа 3 и 6 слишком много вариантов;
– признак делимости на семь непростой для восприятия неискушёнными умами.
Остаётся только 9.
Используя описанную в прошлом календаре технологию, найдём числа-даты 2019 года, кратные 9:
70119 160119 250119 60219 150219 240219 50319 140319 230319 40319 130319 220319 40419 130419 220419 30519 120519 210519300519 20619 110619200619 10719 100719 90819 180819 270819 80919 170919 260919 71019 161019 251019 61119 151119 241119 51219 141219 231219Это задание можно предложить в качестве домашней работы при изучении признаков делимости в пропедевтическом курсе математики (5—6-е классы).
Аргументы для обоснования права на существование математического календаря я также привела в предыдущем выпуске (как раз в предисловии), поэтому повторяться не буду.
Календарь может стать «спусковым механизмом» для математического творчества школьников младших классов. А может запустить идею для выстраивания целого плана на учебный год для внеучебной работы по математике: придуманные праздники – отличный повод для математического просвещения.
Или, как вариант, календарь послужит источником для разработки содержания дополнительного математического образования школьников.
И конечно! – читатели сами могут конструировать «красивые» даты 2019 года и придумать к ним свои праздники.
Структура книги сохранится:
информация о юбилейных датах,
интересные свойства числа 2019,
счастливые и «особые» дни 2019 года,
собственно математический календарь,
четыре исследовательских практикума,
постскриптум.
В некоторых разделах внесена новая информация (по сравнению с прошлым годом).
АвторЮбилейные даты 2019 года1
2295 лет (примерно) с момента рождения древнегреческого учёного Эратосфéна (заведовал Александрийской библиотекой, заложил основы математической географии; «решето Эратосфена» – метод поиска простых чисел)
520 лет (примерно) со дня рождения итальянского математика Никколо Тартáльи (один из разработчиков способа решения кубических уравнений в радикалах; его «Общий трактат о числе и мере» содержит обширный материал по арифметике, алгебре и геометрии)
425 лет (не меньше) как Джон Нейпир Нéпер разработал свою теорию логарифмов
405 лет с момента издания его труда «Описание удивительной таблицы логарифмов» и 400 лет с момента издания работы «Построение удивительной таблицы логарифмов»
395 лет с момента введения Иоганном Кéплером символа «Log» и подробного описания им теории использования логарифмов для вычислений
360 лет с момента введения итальянским математиком Пьетро Менгóли термина «натуральный логарифм»
390 лет с момента формулировки голландским математиком Альбером Жирáром основной теоремы алгебры, учитывая, в том числе, отрицательные и мнимые числа; в этот же год он описал комплексные числа (действительную и мнимуюя части)
385 лет назад вышел первый том «Курса математики» Пьера Эригóна, в котором, в частности, был введён символ перпендикулярности «┴»
285 лет со дня рождения английского математика Уэринга Эдуарда Вáринга (так называемая «проблема Варинга»2 в теории чисел особенно актуальна с точки зрения конструирования математического календаря)
220 лет с момента первого доказательства основной теоремы алгебры немецким математиком Карлом Фридрихом Гáуссом
205 лет со дня рождения французского математика Пьера Лорана Ванцéля (дал первое строгое доказательство невозможности решения двух знаменитых задач древности – об удвоении куба и трисекции угла – с помощью циркуля и линейки)
145 лет с момента доказательства немецким математиком Георгом Кáнтором несчётности множества всех действительных чисел, и 135 лет с момента систематического изложения им принципов своего учения о бесконечности
80 лет с момента попытки группы учёных под псевдонимом Никола Бурбакú представить различные математические теории с позиции аксиоматического метода; начало издания многотомного трактата «Элементы математики»
75 лет с момента выхода книги «Теория игр и экономическое поведение», в которой американские математики Джон Нéйман
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.
Примечания
1
Безусловно, этот список не является полным.
2
Любое целое число, не меньшее 1, может быть представлено в виде суммы некоторого числа слагаемых, каждое из которых есть одна и та же степень какого-то натурального числа; число слагаемых зависит только от степени.