Полная версия
Гипоксия в тренировке спортсменов и факторы, повышающие ее эффективность
Фаина Иорданская
Гипоксия в тренировке спортсменов и факторы, повышающие ее эффективность
Введение
Гипоксия – фактор, прочно вошедший в тренировочный процесс спортсменов высокого класса.
Напряженные тренировочные нагрузки сопровождаются развитием двигательной гипоксии.
Олимпийские игры 1968 г. в Мехико на высоте 2200 м над уровнем моря дали мощный импульс экспериментальным исследованиям по изучению гипоксической гипоксии для обеспечения спортивной работоспособности в процессе тренировки и соревнований в условиях среднегорья. Начиная с 1960-х годов на эту тему было опубликовано большое количество работ (Алипов Д.А., 1969; Волков Н.И. и др., 1970; Вайцеховский С.М., 1986; Суслов Ф.П., Гиппенрейтер Е.Б., Холодов Ж.К., 1999; Байковский Ю.В., 2010; Платонов В.Н., 2012 и др.).
С тех пор раздел подготовки спортсменов в условиях среднегорья вошел в программы годичных планов спортсменов, тренирующихся в видах спорта на выносливость.
В них определялись сроки тренировки, продолжительность сборов, место и высота над уровнем моря, повторяемость работы в среднегорье и т. п. При этом главной целью оставалось повышение функциональных возможностей организма и спортивной работоспособности.
В настоящее время созданы новые технологические установки – гипоксантометоды, гипоксиметры, так называемые «гипоксические домики», позволяющие создавать различные варианты гипоксии и горного климата, что способствует расширению возможностей использования гипоксического фактора как в спорте, так и для населения.
В ряде видов спорта, таких как синхронное плавание, плавание, водное поло, прыжки в воду и др., актуальным является использование гипоксического фактора в виде тренировки с задержкой дыхания.
По-прежнему опытные тренеры и педагоги ищут возможности включения в тренировочный процесс инноваций, позволяющих совершенствовать тренировочный процесс за счет гипоксически-гиперкапнического фактора, в виде масок с удлиненной трубкой, либо за счет перехода на «носовое» дыхание.
На современном этапе развития спорта высших достижений гипоксический фактор прочно занял свое место в системе подготовки спортсменов, являясь мощным средством повышения функциональных возможностей кардиореспираторного и кислородтранспортного обеспечения работоспособности и противостоянием использованию допинговых средств.
Что нового может дать предлагаемая авторами работа в совершенствовании тренировочного процесса с использованием гипоксического фактора?
Среди факторов современного этапа спорта высших достижений следует отнести: рост спортивных результатов, европейских и мировых рекордов и как необходимое условие их обеспечения – повышение объемов и усиление интенсификации тренировочных нагрузок; резкое увеличение числа соревнований (летние и зимние чемпионаты России, кубки России, лига чемпионов, Евролига, кубки Мира, разнообразные коммерческие турниры, международные соревнования и др.), проходящих в разных климатических зонах и часовых поясах; круглогодичный календарь соревнований при нарушении периодизации подготовки; снижение возраста спортсменов высокого класса; возросла психоэмоциональная ответственность за показанные результаты не только перед собой, тренером, командой, руководством федерации, Минспортом, но и перед спонсорами, и рекламодателями.
В целом интенсификация подготовки, напряженность тренировок и соревнований, их психоэмоциональная составляющая существенно возросли, усилив на финише возросших нагрузок и соревнований эффект проявления двигательной гипоксии в обеспечении работоспособности.
Высокий уровень физической и функциональной подготовленности (высокие функциональные возможности кардиореспираторных систем организма, кислородтранспортного обеспечения, вегетативной и гуморально-гормональной регуляции, достаточного метаболического обеспечения скелетных мышц, миокарда, печени, оптимального уровня минеральных солей и микроэлементов и т. д.), позволяющий обеспечить жизнедеятельность организма спортсменов в процессе работы возросшей максимальной мощности.
В сочетании с двигательной гипоксией и гипоксической гипоксией в условиях подготовки в среднегорье суммарный эффект гипоксического фактора на организм спортсмена значительно усиливается и суммируется. И в этих условиях нужно помнить, что острая гипоксия – это фактор, который может оказать повреждающие действия на организм спортсмена.
При этом важно знать и уметь диагностировать показатели тех систем и функций, неадекватно реагирующих на совокупное влияние гипоксической гипоксии в среднегорье и уровень тренировочных нагрузок, вызывающих двигательную гипоксию.
Учитывая существенное омоложение спорта высших достижений, необходимо знание влияния возраста на устойчивость к гипоксии.
Используя тренировку с задержкой дыхания, следует знать, как дозировать продолжительность задержки дыхания и как не допустить неадекватной реакции и возможные нежелательные состояния, обусловленные не четко дозированной задержкой дыхания в процессе работы спортсменов разного возраста.
И, наконец, необходимо знать и выполнять условия, обеспечивающие эффективность тренировки спортсменов с использованием гипоксического фактора.
Указанные выше позиции представлены в данной работе.
Анализируя и обобщая материалы проведенных многочисленных исследований в условиях среднегорья и при использовании гипоксических и гипоксически-гиперкапнических факторов, представим условия, обеспечивающие, с одной стороны, повышение функционального потенциала, а с другой – способные оказывать повреждающие действия на организм спортсмена и, тем самым, не привести к ожидаемому росту спортивных результатов.
Материалы исследований базируются на анализе результатов динамических наблюдений в процессе десяти экспериментальных учебно-тренировочных сборов в условиях среднегорья на высоте от 1700 до 2200 м над уровнем моря (в горах Кавказа – Цахкадзор – 4 сбора продолжительностью до 30–40 дней; Кисловодска – продолжительностью 21 день; Тянь-Шаня, Минк-Куша – 1 сбор продолжительностью 67 дней; Мехико – 2 сбора продолжительностью 30 дней; Черногории – сбор продолжительностью 21 день; Боливии – сбор продолжительностью 14 дней).
В среднегорье тренировались спортсмены высокой квалификации в беге на средние и длинные дистанции, в велоспорте, боксе, гимнастике, волейболе и футболе: 226 спорстменов мужского пола в возрасте от 18 до 32 лет, мастера спорта и спортсмены I разряда.
В экспериментальных исследованиях участвовали 125 спортсменов: в двухгодичной тренировке с задержкой дыхания -28 мастеров спорта, бегунов на средние дистанции; в тренировках с использованием маски с трубкой длиной 50 см – 24 спортсмена I разряда, бегуна на средние дистанции; в беге с «носовым дыханием» – 16 спортсменов. Разработка модели оценки индивидуальной устойчивости к гипоксии изучалась на группе спортсменов в количестве 30 человек. Электрокардиологические исследования в среднегорье проведены на 115, в барокамере – на 27 спортсменах, на равнине – на 190 боксерах.
В работе участвовали высококвалифицированные специалисты – педагоги, тренеры, физиологи, медики, биохимики: С.И. Архаров, Н.И. Волков, Э.М. Матвеева, В.Г. Хволес (раздел 4); Зоран Гайич, Ю.П. Семин (раздел 6); С.И. Архаров, Е.И. Дмитриев (раздел 7); Л.М. Перминов, Н.К. Цепкова, Л.Ф. Муравьева (раздел 9); А.М. Якимов, Н.Н. Марьянов, А.Н. Некрасов (разделы 8, 10, 11).
Автор выражает благодарность всем специалистам, работающим с ним по проблеме гипоксии, и спортсменам, участвующим в экспериментальных учебно-тренировочных сборах и экспериментальных исследованиях.
Список использованных сокращений
АД – артериальное давление
АДФ – аденозиндифосфат
АЛТ (ALT) – аланинаминотрансфераза
АСТ (AST) – аспартатаминотрансфераза
АТФ – аденозинтрифосфорная кислота
ВЕ – избыток кислот или оснований
ВНС – вегетативная нервная система
ВМК – ванилинминдальная кислота
ДМП – дополнительное «мертвое» пространство
ЖЕЛ – жизненная емкость легких
КФ – креатинфосфат
КФК – креатинфосфокиназа
КЩР – кислотно-щелочное равновесие
КЩС – кислотно-щелочное состояние
МОД – минутный объем дыхания
МПК – максимальное потребление кислорода
НМА – нервно-мышечный аппарат
О2 – кислород
ОРУ – общеразвивающие упражнения
ОФП – общая физическая подготовка
ПАНО – порог анаэробного обмена
СО2 – углекислый газ
ССС – сердечно-сосудистая система
ЧСС – частота сердечных сокращений
ЭКГ – электрокардиограмма
Hb – гемоглобин
La – лактат
РСО2– парциальное давление углекислого газа
РО2 – парциальное давление кислорода
PWC170 – велоэргометрическая проба
R – Rmax – наибольшее значение величины интервала R – R
R – Rmin – наименьшее значение величины интервала R – R
R – Rср. – математическое ожидание (средняя величина интервала R – R)
1. Гипоксический фактор в повышении функционального состояния организма спортсменов
Для нормальной деятельности организма человека необходимо постоянное поступление кислорода (O2), воспроизводство энергии, а следовательно, постоянная работа газотранспортных систем (дыхания, кровообращения) и системы биологического окисления. В случае нарушения деятельности этих систем возникает эндогенная гипоксия (Noreen R.,Henig David J., Pirson, 2000).
Гипоксия может быть обусловлена различными нарушениями.
Дыхательная, или респираторная, гипоксия возникает в результате нарушения газообменной функции легких при нормальном парциальном давлении O2 (РO2) в атмосферном воздухе, вследствие затруднения проникновения O2 в кровь через дыхательные пути либо при понижении PO2 в воздухе. Практически любые тяжелые нарушения внешнего дыхания могут вызвать респираторную гипоксию. При дыхательной гипоксии развивается гипоксемия, сопровождающаяся метаболическим ацидозом. Гиперкапния способствует стимуляции внешнего дыхания и кровообращения. Однако при высокой степени увеличения двуокиси углерода усугубляется респираторная гипоксия (Piiper I, 1967; Чоговадзе А.В., 1984).
Циркуляторная гипоксия возникает в результате снижения объемной скорости кровотока, что приводит либо к уменьшению притока артериальной крови к тканям, либо к затруднению оттока венозной крови от тканей. Обычными причинами циркуляторной гипоксии являются сердечная недостаточность, сосудистая недостаточность или гиповолемия. Последняя может приводить к сердечной недостаточности вследствие уменьшения притока крови к сердцу и к сосудистой недостаточности вследствие несоответствия сосудистого тонуса объему циркулирующей крови. Снижение объемной скорости кровотока при циркуляторной гипоксии сопровождается уменьшением O2 в венозной крови, а также увеличенной артериовенозной разницей по O2. Обычно гипоксия данного типа приводит к появлению метаболического ацидоза (Рябов Г.А., 1988).
Гемическая гипоксия связана с большим снижением эритроцитов либо инактивацией гемоглобина.
Гипоксия может возникать и при нормальном составе окружающей газовой среды, и при нормальной деятельности системы, транспортирующих O2 в клетки. Она развивается в том случае, если нарушается утилизация O2 в процессе биологического окисления. Кислородное голодание данного типа называется тканевой гипоксией. Недостаточность биологического окисления может быть следствием снижения интенсивности окислительных процессов или же уменьшения эффективности биологического окисления. Ослабление окислительных процессов возникает в результате снижения активности дыхательных ферментов, ослабления их образования, изменений свойств мембран митохондрий и др. (Koistinenp О., Rusko Н., Irjala К., 2000).
Гипоксемия – это состояние, при котором РO2 в артериальной крови меньше нормального (< 60 мм рт. ст.). Гипоксемия возникает вследствие непопадания кислорода в кровь. Гипоксия тканей возникает вследствие того, что клеткам не хватает 02 для выполнения функции метаболизма. Хотя гипоксемия (слишком маленькое поступление кислорода в кровь) обычно является причиной гипоксии тканей, существуют другие состояния, которые прерывают поступление кислорода в кровь и приводят к гипоксии.
Основными механизмами гипоксемии являются: низкий уровень O2, гиповентиляция, нарушение соотношения перфузии-вентиляции, сброс крови «справа налево».
Первый механизм гипоксемии возникает при наличии неблагоприятной окружающей среды. Низкое давление вдыхаемого кислорода возникает как результат уменьшения фракции вдыхаемого кислорода (FiO2) по сравнению с нормой (FiO2 < 0,21) при нормальном барометрическом давлении.
Гиповентиляция является вторым фактором, который приводит к гипоксемии.
Среди всех механизмов гипоксемии нарушение соотношения вентиляции и перфузии (В/П) является наиболее распространенным, хотя и самым сложным. В нормальных легких В/П равняется 1. Гипоксемия имеет место при уменьшении В/П.
Четвертым механизмом гипоксемии является сброс крови «справа налево». У здоровых пациентов физиологический сброс 5 % от сердечного выброса возникает вследствие циркуляции крови через бронхи, где она скапливается непосредственно в легочных венах.
Внелегочный сброс возникает в сердечно-сосудистой системе (ССС). Внутрисердечный сброс возникает при наличии дефекта межпредсердной или межжелудочковой перегородки или незаращении артериального протока. Данные дефекты обычно приводят к сбросу крови «слева направо», так как левое сердце более мощное. Если правое сердце создает давление больше, чем в левом сердце, то кровь начинает перетекать в обратную сторону и возникает сброс «справа налево».
• Наряду с перечисленными видами гипоксии, была выделена и гипоксия нагрузки. При усилении функции мышц и недостатке кислорода сочетание гипоксии нагрузки с гипоксической гипоксией может быть эффективным и способствует повышению работоспособности спортсмена (Волков Н.И., 1990; Колчинская А.З., 1993; Платонов В.Н., Булатова М.М., 1993).
В целях изучения гипоксии нагрузки проведены исследования в лабораторных условиях динамики снижения уровня оксигенации крови в процессе работы на велоэргометре ступенеобразно повышающейся мощности от 800-1000-1200-1500-1700 кгм/мин и выше у четырех групп спортсменов (юношей, юниоров, зрелого возраста и пожилых спортсменов).
По мере повышения мощности нагрузок в диапазоне от 800 до 2000 кгм/мин происходит прогрессирующее падение оксигенации (рис. 1). Возрастные различия выявляются лишь при работе средней и большой мощности, причем у спортсменов зрелого возраста и юниоров падение выражено больше (в среднем на 18 %). Имеется большой разброс индивидуальных данных.
Как видно из рисунка, в работе субмаксимальной мощности развивается гипоксия при снижении оксигенации на 18–23 %. В условиях среднегорья в работе мощностью 1600 кгм/мин снижение оксигенации достигает 32–33 % (табл. 3).
При индивидуальном анализе 110 динамических электрокардиограмм (ЭКГ) была выявлена связь обнаруженных ЭКГ-изменений с динамикой поглощения кислорода, особенно с величиной кислородного пульса. На рис. 2 (А, Б) приводится серия ЭКГ спортсменов разного возраста, заснятых в процессе испытания, свидетельствующая о влиянии гипоксии нагрузки на работу сердца.
Рис. 1. Снижение насыщения артериальной крови O2 (от 96 %) в процессе ступенеобразно повышающихся нагрузок
Рис. 2. Изменение ЭКГ в процессе работы повышающейся мощности:
А – у спортсмена Г., 18 лет:
а – исходные данные,
б – 3-я мин работы мощностью 800 кгм/мин,
в – 3-я мин работы мощностью 1000 кгм/мин,
г – 3-я мин работы мощностью 1200 кгм/мин,
д – 3-я мин работы мощностью 1500 кгм/мин
Б – у спортсмена В., 20 лет:
а – исходные данные,
б – 3-я мин работы мощностью 1000 кгм/мин,
в – 3-я мин работы мощностью 1200 кгм/мин,
г – 3-я мин работы мощностью 1500 кгм/мин,
д – 3-я мин работы мощностью 1700 кгм/мин
Интегральным показателем резистентности организма к измененным условиям внутренней среды является максимальная мощность работы. Согласно данным, у юношей в преобладающем большинстве случаев она находилась в пределах 1500 кгм/мин, только в 12 % случаев достигала 1700 кгм/мин.
В группе спортсменов зрелого возраста увеличивался процент (68 %) случаев работы мощностью 1500–1700 кгм/мин, а у отдельных спортсменов мощность работы достигала 2000 кгм/мин (14 %). У лиц пожилого возраста она не превышала 1200 кгм/мин (в 24 % случаев она не превосходила 800 кгм/мин).
Предельно высокая мощность работы для каждой возрастной группы отмечается у наиболее подготовленных спортсменов, отличающихся высокой выносливостью.
Рассмотренное выше разделение гипоксии на различные типы является условным. Обычно гипоксическое состояние, наблюдаемое при выполнении физической нагрузки субмаксимальной мощности, развивается вследствие различных причин и является смешанным (Агаджанян Н.А., Миррахимов М.М., 1970).
При действии гипоксических факторов в организме очень быстро возникают защитно-приспособительные реакции, направленные на предупреждение или устранение гипоксии, сохранение обмена веществ и гомеостаза на нормальном уровне.
В период экстренной адаптации гипоксия проявляет свойства сигнала, активирующего сложную по организации функциональную систему, обеспечивающую поддержание биологического окисления в тканях (Меерсон Ф.З., 1973).
Происходит активация дыхания: повышается альвеолярная вентиляция, усиливается легочный кровоток и повышается перфузное давление в легочных капиллярах, возрастает проницаемость альвеолярно-капиллярных мембран и т. д. Стимулируется кровообращение, что проявляется тахикардией, увеличением ударного объема сердца и минутного объема крови и потока 02 к мозгу и сердцу (Бреслав И.С., Иванов А.С., 1990).
Активируется система крови, происходит выброс эритроцитов из депо, усиливается эритропоэз, возрастает диссоциация оксигемоглобина в тканях и т. д.
Перестраиваются и метаболические системы, в результате чего поддерживается энергетический баланс клеток: повышается активность ферментов дыхательной цепи, может увеличиваться сопряженность биологического окисления, активируется анаэробный гликолиз (Барбашова З.И., Григорьева Г.И., 1964).
Долговременная адаптация организма к гипоксии формируется в результате периодически повторяющейся экстренной адаптации, вследствие чего организм приобретает индивидуальный опыт борьбы с гипоксией. Это состояние характеризуется повышенной устойчивостью организма к гипоксии. Адаптация к гипоксической гипоксии повышает как специфическую, так и общую резистентность организма.
Медико-биологическими исследованиями последних лет выявлено, что высокая работоспособность бегуна в условиях выраженного отклонения гомеостаза в значительной степени зависит от индивидуальной устойчивости организма к воздействию гипоксического фактора. Установлено, что спортсмены, обладающие низкой индивидуальной устойчивостью к гипоксии, не могут ускоряться на финише. Считают, что гипоксическая тренировка способствует развитию специальной выносливости бегунов на средние дистанции, это проявляется в экономизации реакции дыхания, кровообращения, энергетического обмена, и как следствие – повышается устойчивость к гипоксии (Колчинская А.З., 1991; Terrados N., 1992).
Для целенаправленного увеличения резистентности к кислородной недостаточности специалистами разработан ряд методов, а именно: тренировка в среднегорье, барокамере; искусственная задержка дыхания, дыхание смесями, обедненными кислородом, и дыхание в дополнительное «мертвое» пространство – ДМП (Алипов Д.А., 1969; Суслов Ф.П., Гиппенрейтор Е.Б., Холодов Ж.К., 1999; Платонов В.Н., 2012; Архаров С.И., Якимов А.М., 2012 и др.).
По данным Н.А. Гадзиевского, Д.А. Полищука, Р.Я. Левина, гипоксия нагрузки, отягощенная гипоксической гипоксией (тренировка в среднегорье), приводит в результате развития компенсаторных реакций к совершенствованию систем биоэнергетики, дыхания, кровообращения, тканевых механизмов, вследствие чего повышается работоспособность спортсменов.
Взаимосвязь тренировки в условиях среднегорья с повышением спортивных результатов установлена в значительном количестве исследований (Вайцеховский С.М., 1968; Иванов А.С., Зима А.Г., 1970; Фруктов А.Д., Степанова Е.С., Фарфель В.С., Головина Л.Л., 1976; Lange G., 1986; Суслов Ф.П. и др., 1999; Радченко А.С., Чургинов О.А., Шеянов О.М., 2012 и др.). Авторы считают, что в условиях среднегорья быстро образующийся кислородный долг приводит к возникновению ацидоза с дыхательной компенсацией, в результате гипервентиляции происходит усиление вымывания углекислого газа (СO2) и выделение его через легкие, далее изменения состава крови, скорости кровотока, повышение эффективности тканевых и молекулярных механизмов энергообеспечения. Однако, по данным Д.А. Полищука, прирост спортивных результатов наблюдается лишь на 30-31-й день пребывания в среднегорье, а до 20-го дня происходит перестройка функциональных систем организма.
Таким образом, метод активной адаптации организма спортсмена к гипоксии вследствие тренировки в среднегорье приводит к значительному расширению функциональных возможностей организма и улучшению спортивно-технических результатов.
Тренировка в условиях среднегорья сопровождается увеличением способности тканей и органов утилизировать кислород из гипоксической среды:
– легочной вентиляции;
– сердечного выброса;
– содержания гемоглобина в крови;
– количества эритроцитов;
– количества миоглобулина;
– размера и количества митохондрий;
– количества окислительных ферментов.
Факторы, лимитирующие работоспособность:
– потребление кислорода и закисление (накопление лактата крови) при стабилизации или снижении частоты сердечных сокращений (ЧСС);
– дефицит макроэргов и увеличение потенциала фосфорилирования;
– усиление процессов фосфорилирования и повышение выработки митохондриями аденозинтрифосфорной кислоты (АТФ).
В.В. Матов, И.Д. Суркина (1968), Н.А. Агаджанян (1983) отметили повышение функциональных возможностей спортсменов при применении метода повторных подъемов в камере низкого давления. Было установлено, что при подъеме на 5000 м минутный объем дыхания (МОД) возрастает на 90 %, глубина дыхания увеличивалась на 100–400 мл, частота – на 2–3 дыхания в мин. Однако пассивная адаптация к гипоксии в барокамере дает небольшой и кратковременный эффект.
Тренировка с искусственной задержкой дыхания позволила сократить объем тренировочных нагрузок и повысить спортивные результаты при подготовке лыжников, пловцов и бегунов на средние дистанции (Архаров С.И., 1967; Слогуб С.Л., 1998; Якимов А.М., 2009). Авторы доказали, что этот метод может быть использован на равнине для подготовки спортсменов к состязаниям в среднегорье.
Е. Каунсильмен[1] (1982) также установил, что в группе пловцов, тренировавшихся с задержкой дыхания, уровень максимального потребления кислорода (МПК) возрос на 16,6 %, а в контрольной группе лишь на 5,5 %. При этом у испытуемых не было обнаружено изменение объема сердца, количества эритроцитов и гемоглобина в крови. Автор полагает, что повышение МПК связано с улучшением капилляризации мышц, повышением эффективности внутриклеточных обменных процессов и способности вырабатывать большое количество энергии в единицу времени.
В последнее время в практике подготовки спортсменов широко стал применяться метод вдыхания гипоксически-гиперкапнических смесей (Глазачев О.С., Дудних Е.Н., Ярцева Л.А., 2010).
Н.А. Агаджанян, А.И. Елфимов (1983) выявили, что при использовании гипоксической смеси (15–16 % O2) в тренировочном процессе показатели физической работоспособности у испытуемых повышались на 29 %, а в контрольной группе на 12–15 %, при вдыхании гипоксически-гиперкапнической смеси (1–2 % СO2 и 14–15 % O2) было зарегистрировано увеличение работоспособности на 34 %, тогда как в контрольной группе на 15 %.
Таким образом, гипоксическая гипоксия в сочетании с физической нагрузкой является наиболее перспективной в повышении адаптации резервов организма, но предлагаемый метод гипоксической тренировки (в среднегорье, барокамере) не всегда приемлем и недоступен для массового применения.
Наиболее доступен для спортивной практики метод гипоксической тренировки с применением специальных масок, создающих ДМП.