bannerbanner
Как рождается гравитация
Как рождается гравитация

Полная версия

Как рождается гравитация

Жанр: физика
Язык: Русский
Год издания: 2019
Добавлена:
Настройки чтения
Размер шрифта
Высота строк
Поля
На страницу:
2 из 9

Трудно представить, а может и не трудно, что почти три с половиной столетия назад произошло открытие этого закона, но до сих пор человечество не может разгадать несколько тайн и загадок:

1. Что это за загадочные гравитоны, отвечающие за гравитационное взаимодействие, которые не удается обнаружить даже современными инструментальными средствами?

2. Как осуществляется взаимодействие между тяготеющими телами, что такое сила гравитации?

3. Константа гравитационного взаимодействия G остается наименее точно измеренной по сравнению с другими константами.

Ответы вот на эти почему, а также и на множественные другие вопросы будут представлены на страницах данной книги.

Свои исследования и доказательства на тему гравитации начнем с неуловимых гравитонов. Вопрос: они действительно неуловимы?

1.3. Гравитон

1.3.1. Неуловимые гравитоны


Гравитация, по заключению ученых, – это огромное белое пятно в физике.

Гравитон – гипотетическая элементарная частица – предполагаемый переносчик гравитационного взаимодействия в рамках квантовой теории. Предполагается, что гравитон не будет обладать электрическим зарядом и его спин будет равен 2. Почему вопросы поставлены в будущем времени? Все потому, что данная частица до сего времени не обнаружена.

Какие только эксперименты не проводила наука в поисках неуловимых гравитонов. Первый приемник гравитационного излучения был построен в 1960-х гг. в США профессором физики Мэрилендского университета Джозефом Вебером [3]. Детектор представлял собой сплошной алюминиевый цилиндр длиной 1,5 м, диаметром 0,6 м и массой 1,5 т. (Сейчас этот массивный цилиндр находится в Смитсоновском музее в Вашингтоне.)

Цилиндр подвешивался горизонтально на специальной нити в раме из стальных блоков, встроенных в вакуумную камеру, окруженный акустическими фильтрами. Сам цилиндр был облеплен пьезоэлектрическими датчиками, регистрирующими всякое изменение геометрических размеров с точностью до 10—14 см. Два таких цилиндра (детектора) были разнесены на расстоянии 1000 км друг от друга и установлены в специальных лабораториях. Регистрационная система обоих детекторов синхронизировалась, фиксировались только те сигналы, которые совпадали по фронту с точностью до 0,2 с. В конце 1969 г. Дж. Вебер сделал сенсационное заявление. Он объявил, что обнаружил гравитационные волны, пришедшие на Землю из глубин Космоса. По его сообщению, наблюдались совпадения на детекторах до 100 случаев в год, которые можно было интерпретировать как всплески гравитационных волн.

В 1970-х гг. были созданы аналогичные детекторы гравитационного излучения в разных странах. Однако не было однозначных сообщений о регистрации гравитационных волн, наблюдаемых Вебером, и поэтому результаты, полученные им, считаются недоказанными.

В последующие годы использовались гравитационные антенны второго поколения, у которых пятитонные алюминиевые цилиндры охлаждались до температуры 2 К. Точность таких детекторов достигала 2∙10—17 см.

В России подобные методы регистрации гравитационных волн разрабатывались группой ученых МГУ под руководством профессора В. В. Брагинского. Чувствительность детекторов достигала 5·10—18 см!

В последние годы для улавливания гравитационных волн используются искусственные спутники Земли с установкой на них лазерных интерферометров. Лазеры фиксируют малейшие изменения расстояний между спутниками, отождествляемые как воздействие гравитационных волн. Существует проект космического гравитационного детектора LISA (Laser Interferometer Space Antenna – лазерно-интерферометрическая космическая антенна), однако никаких колебаний спутников, связанных с гравитационными волнами, обнаружено не было.

В США, Европе и Японии в настоящий момент существует несколько действующих наземных лабораторий. В некоторых странах созданы специальные подземные лаборатории для улавливания частиц типа «нейтрино», которым пытаются приписать функции переносчика гравитационного взаимодействия.

Почему тела притягиваются друг к другу? В свое время Альберт Эйнштейн объяснил этот феномен, как искривление пространства-времени, созданное гравитирующими телами. С тех пор ученые всего мира хотят проверить, действительно ли пространство и время могут искривляться? И если да, то по каким законам это происходит?


1.3.2. LIGO


В США в начале XXI в. построены два гигантских наземных интерферометра LIGO (Laser Interferometer Gravitational-Wave Observatory) для регистрации гравитационных волн [4]. LIGO является совместным проектом ученых из Массачусетского технологического института, Калифорнийского технологического института и многих других научных организаций и университетов США. Проект построен при финансовой поддержке Национального научного фонда (NSF), его стоимость составляет 365 млн долл. в ценах 2002 г., является крупнейшим и самым амбициозным проектом, когда-либо финансируемых NSF (в США приравнивается к проекту «Аполлон» – высадке человека на Луну). В проекте LIGO принимают участие в научном сотрудничестве (LSC) 50 учреждений, с общим числом работающих более 800 исследователей. С вводом в эксплуатацию в 2007 г. Virgo – франко-итальянского детектора гравитационных волн, количество занятых стран, компаний и специалистов существенно прибавилось.

Каждый интерферометр состоит из двух полых цилиндров диаметром 1,2 м, расположенных в форме латинской буквы L длиной 4 км. В цилиндрах поддерживается сверхглубокий вакуум. Для повышения точности наблюдений вакуумные цилиндры установлены на специальном оборудовании, которое гасит колебания земной почвы.

Регистраторами являются лазерные интерферометры: с одной стороны – источник и приемник лазерного излучения, а с другой – зеркала на особых подвесах, одновременно являются пробными массами. Искажение пространства-времени, вызванное прохождением мощных гравитационных волн, вызовет изменение расстояния между источниками и отражателями лазерных лучей. Поскольку цилиндры расположены перпендикулярно друг к другу, то расстояние между одной парой источника и отражателя должно увеличиться, а между другой – уменьшиться. Ожидается, что изменения эти будут относительно невелики – всего несколько долей сантиметра.

Для достижения еще большей точности наблюдений и достоверности информационных сигналов построены сразу две подобные установки на большом удалении друг от друга: одна в штате Вашингтон, а другая – в Луизиане.

Глядя на фотографию американских монстров, я поражен масштабностью детекторов и теми затратами, которые были вложены в данный проект. Это действительно похоже на амбицию американской науки, которая, очевидно, пытается удивить остальной научный мир.

Вот здесь я не прав, американцы – они же прагматичные господа и деньги на ветер кидать не будут. Тогда что? Очевидно, они ожидают, что окупаемость этих проектов очень велика. Пытаются не отстать от Америки и правительства других стран и тоже не жалеют денег на строительство подобных детекторов для обнаружения гравитационных волн. Италия и Франция построили уже упомянутую VIRGO; Англия и Германия – GEO-600; Япония – TAMA-300. Все хотят разгадать великую тайну природы!

Я не принадлежу к числу скептиков и желаю ученым только успешных экспериментов в достижении благородной цели – четкой регистрации и понимания гравитации. В принципе, коллаборация LIGO уже оправдала надежды некоторых ученых: трое из них – Райнер Вайсс, Барри Бариш и Кип Торн в 2017 г. получили Нобелевскую премию за «решающий вклад» в создание обсерватории LIGO и наблюдение за гравитационными волнами.

Ура! Гравитационные волны открыли, это равносильно тому, что неуловимости гравитонов пришел конец! Ан нет, это какие-то странные гравитационные волны, рожденные от слияния двух массивных черных дыр (29 и 36 масс Солнца) с длительностью сигнала, не поверите, аж в две десятые доли секунды, на расстоянии около 1,3 млрд световых лет от нас! «Менее чем за секунду они образовали черную дыру массой 62 солнечных, а „лишние“, около 4-х солнечных масс были выброшены в форме энергии – в основном в виде гравитационной волны» [5]. (Мой скепсис здесь касается того, что два громаднейших по массе космических тела слились в одно массой 62 солнечных всего за 0,2 секунды!) Это поистине сказочно быстрое слияние огромных масс и энергий.

Предполагаю, что через несколько лет проекты LIGO и Virgo перейдут в разряд музейных экспонатов, как детектор Дж. Вебера, только под открытым небом. Мой анализ данных проектов будет изложен в следующей книге.

Однако! В ближайшем будущем детекторы Вебера предполагают вывести в космос, и начнется новый виток охоты на пресловутые гравитоны. Но, к сожалению, Вебер этого уже не узнает – он скончался в сентябре 2000 г.

Возможно, впервые такой затратный пример показал Н. Тесла, который не смог справиться с молниями, и его проект гигантской башни Wardencliffe Tower на острове Лонг-Айленд спустя 15 лет после начала строительства рухнул от взрыва подложенной взрывчатки.

Глядя на такие масштабные проекты, поневоле скажешь, что А. Эйнштейн действительно был гениальным ученым. Судя по ироническому высказыванию физиков, «гениальность ученого заключается в том, насколько он затормозил развитие науки». Получается уже целый век!


1.3.3. Детектор «Дулкын»


В России тоже ведутся (велись) аналогичные работы, но не в таком масштабе, как у американцев. В Научном центре гравитационно-волновых исследований «Дулкын» (Татарстан) была построена подземная лаборатория ГИПО. Данным центром, по решению комиссии ВПК еще в начале 1990-х гг., был создан экспериментальный образец гравитационно-волнового детектора «Дулкын». Сегодня НЦ ГВИ «Дулкын», похоже, уже не проводит полугодовой эксперимент по проверке принципа эквивалентности Эйнштейна и калибровке лазерно-интерферометрического гравитационно-волнового детектора «Дулкын», так как Нобелевская премия «уплыла» на гипотетических гравитационных волнах через Атлантический океан в Америку.


1.3.4. Большой адронный коллайдер (БАК)


И это еще не все. Еще одно чудо современной мысли, про которое уже известно всем, – Большой адронный коллайдер (БАК) [6]. Этот огромный подземный ускоритель заряженных частиц диаметром 27 км был нацелен на поиск разгадки, а был ли Большой взрыв? Есть ли в природе загадочные и непонятные бозоны Хиггса (частицы Бога)? Доказательство «Стандартной модели» (теории элементарных частиц) и существование гравитонов – гипотетических частиц, которые отвечают за гравитацию.

В строительстве и исследованиях БАК участвовали и участвуют более 10 тыс. учёных и инженеров из более 100 стран мира. Глубина залегания туннеля – от 50 до 170 м с небольшим наклоном туннеля 1,4% относительно поверхности земли. Для удержания, коррекции и фокусировки протонных пучков используются 1624 сверхпроводящих магнита, общая длина которых превышает 22 км. Магниты работают при температуре 1,9 K (—271о C), что немного ниже температуры перехода гелия в сверхтекучее состояние. Но даже это чудо научной техники, как показали эксперименты, не в силах уловить или поймать то, чего в природе не существует!

Строительство коллайдера, которое продолжалось семь лет, обошлось в 9 млрд долл. Ускоритель частиц создавался под руководством Европейской организации ядерных исследований. В проекте было задействовано 700 специалистов из России. Общая стоимость заказов, которые получили российские предприятия, по некоторым оценкам, достигает 120 млн долл. В то же время Россия внесла деньги в строительство БАК как долевой участник.

В двух больших экспериментальных коллаборациях – CMS и ATLAS трудится солидная международная команда. Вы посмотрите, даже та неполная часть из перечисленных выше установок показывает, какие усилия и финансы затратили и тратят страны и мировая наука (физические, умственные, материальные), какой точности смогли достичь измерительные приборы (5∙10—19 см), а поймать гравитоны в хитроумно расставленные сети ну никак не удается.

Тогда как и где искать эти загадочные гравитационные волны или неуловимые гравитоны? А ведь они не единичные импульсы, которые уловила LIGO, а их триллионы, квадрильоны и квинтильоны вокруг нас. Похоже, физика зашла в тупик.

Пора уже их, эти гравитоны, отловить, иначе знаменитый закон всемирного тяготения так обрастет научной шелухой, что будущим поколениям его придется откапывать в научной макулатуре как артефакт.


P.S. За теоретическую разработку и предсказание бозона Хиггса в 2013 г. шотландцу Питеру Хиггсу и бельгийцу Франсуа Энглеру присуждена Нобелевская премия по физике. В 2017 г. Нобелевская премия присуждена за открытие гравитационных волн. Гравитационные волны были уловлены двумя лабораториями LIGO, от слияния двух черных дыр, события, которое произошло 1 млрд 300 млн лет назад [5].

БАК – это не только огромная по размерам подземная машина, здесь и научные статьи пишут огромными коллективами. В феврале 2018 г. в «Европейском физическом журнале» (The European Physical Journal C) опубликована статья, которую написали 2040 авторов (!), – «Measurement of the W-boson mass in pp collisions at s√=7TeVs=7TeV with the ATLAS detector» («Измерение массы W-бозона в pp-столкновениях с помощью детектора ATLASs√=7ТэВ») [7]. Интересно, этот фундаментальный авторский труд занесли в книгу рекордов Гиннеса?

1.4. Теории гравитации

1.4.1. Полевая или геометрическая – чья возьмет?

Что ни голова – то теория.

(говорят)

Гравитация, как полагают историки, была первым взаимодействием, описанным математической теорией. Не важно, что Аристотель ошибался, утверждая, что объекты с разной массой падают с разной скоростью. Важно то, что гравитация была под прицелом ученых древности.

В XVII в. благодаря учениям Коперника, Галилея, Кеплера, Ньютона и других сподвижников науки, произошел качественный прорыв в изучении проблемы гравитации.


Рис. 1.1. Гравитация, по Эйнштейну, – это склон массивного тела,

по которому скатывается менее массивное тело.


Кульминацией изучения феномена гравитации стало открытие самого закона всемирного тяготения, к которому много вопросов, и к нему будем регулярно обращаться на страницах данной книги.

Далее такими учеными, как Лоренц, Планк, Эйнштейн, и другими были разработаны новые красивые подходы к разрешению проблемы гравитации, но, увы, она осталась нерешенной.

В наше время теоретики тоже не сидят, подпирая подбородок кулаками, они ежедневно, час за часом стучат по клавишам клавиатур и уже написали столько, что одних только гипотез перевалило далеко за сотню, а написанное исчисляется тысячами томов.

На сегодня, как говорит Википедия, вырисовалось три перспективных направления к решению задачи квантования гравитации: теория струн, петлевая квантовая гравитация и причинная динамическая триангуляция. Но если подойти еще более обобщенно, то можно выделить два основных направления – это полевая и геометрическая теории гравитации.

Напомню кратко читателю, что это за направления и где ищут ученые те самые неуловимые гравитоны.

Опыты Галилея и математические законы движения небесных тел Кеплера заложили фундамент для теории гравитации Ньютона. С некоторой натяжкой можно отнести данную теорию к первый полевой теории. Почему с натяжкой? Причина одна – электромагнитные волны были открыты намного позднее, уже после смерти Ньютона. В средине XVIII в. Фарадей экспериментально обосновал и развил свою концепцию полевой природы материи и единства физических сил природы. Далее, как образно отметил Р. Мелликэн: «Только Максвелл облек плебейски обнаженное тело фарадеевских представлений в аристократические одежды математики» [8].Первая статья Максвелла по теории электромагнитного поля так и называлась: «О силовых линиях Фарадея».

Другая половина теоретиков, привлекающих геометрию в свои идеи построения теорий гравитации, считают, что на сегодняшний день любая фундаментальная физическая теория содержит в своей основе некоторый комплекс геометрических идей. Возникло и уже оформилось целое направление геометрического описания гравитации и других фундаментальных взаимодействий в многомерной схеме Калуцы—Клейна.

На сегодняшний день самой известной и, даже можно сказать, признанной теорией гравитации является общая теория относительности (ОТО) А. Эйнштейна. Согласно данной теории, гравитация обусловлена искривлением пространства, создаваемого гравитирующими телами, где геометрические свойства пространства выступают в роли реально действующих сил. Любая масса искривляет пространство-время вокруг себя, другая масса, попадая в данную область искривления, двигается по склону притяжения. То есть склон выступает неким эквивалентом силы притяжения. Наглядно можно представить действие гравитации по принципу гамака.

Эйнштейн начал с 4-мерного пространства-времени. Затем Т. Калуца в своей классической работе 1921 г. предложил геометризовать электромагнетизм, объединив его с гравитацией путем повышения размерности пространства-времени на единицу. Калуца постулировал независимость геометрических величин от 5-й координаты, получивших название «чудес Калуцы» [9].

Потом к чудесам физики начали привыкать и координаты стали размножаться. После относительного спада в середине XX в. интерес к многомерным геометрическим моделям снова возрос в 1970—1980-е гг. Это соотносят, прежде всего, с прогрессом исследований электрослабых и сильных взаимодействий.

В дальнейшем были попытки построения многомерных теорий поля, которые должны были объединить ОТО с теориями электромагнитного, электрослабого и даже сильного взаимодействий. Появилась 6-мерная модель гравиэлектрослабых взаимодействий, содержащая основные элементы модели электрослабых взаимодействий Вайнберга—Салама. Далее – 7-мерная модель гравиэлектрослабых взаимодействий, описывающая основные элементы классической (не квантовой) хромодинамики. И наконец, была построена 8-мерная модель грависильных взаимодействий в метрическом варианте, в которой бозонный и фермионный секторы взаимосогласованы.

Эйнштейна можно отнести к числу фантастов-прагматиков. Его творчество началось в начале прошлого столетия, а в то время население Земли было гораздо меньше, было меньше фантастов, соответственно, их было меньше и среди физиков. В начале XX столетия общемировая численность населения Земли составляла 1,625 млрд чел. Сегодня эта численность составляет 7,5 млрд чел. Росло не только общее число людей, но росло и число физиков. Видимо, по этой причине, как считают сами ученые, гипотезы по гравитации имеют явный переизбыток. Но задача-то осталась нерешенной, а поиск истины с каждой новой гипотезой расширяется в геометрической прогрессии, и это еще больше усугубляет данную проблему.

Продолжают с большей интенсивностью муссироваться идеи так называемого пушинга (приталкивания). Не находя прямого ответа, некоторые физики заходят сзади материи и начинают ее приталкивать и толкать для создания видимости притяжения. Но откуда взять такую энергию? Разве что привлечь опять Бога, так атеизм не позволяет.

Эфир – непонятный, бесконечный и нескончаемый! Несмотря на то, что в начале XX в. эфир был исключен из поставщиков энергии, физики, видя, что все аргументы материи в части гравитации исчерпаны, вновь обращаются к вакууму, т.е. к эфиру. А чтобы его материализовать, придумали, что вакуум не пустой, а «физический», а если физический, то и материальный, субстанциональный и, соответственно, энергонасыщенный. Эфир стали применять как «приталкиватели», так и «притягиватели». На эфир набросились, он стал нужен всем, как спасительная соломинка, когда ухватиться уже не за что.

Эфировые теории отвергают ОТО потому, что данная теория отрицает существование самого эфира, соответственно, отвергаются Большой Взрыв и существование черных дыр. Тем самым отвергается акт появления Вселенной 13,7 млрд лет тому назад. Вселенная, таким образом, признается вечно существующей. Тогда, исходя из признания вечности Вселенной, возникают два запрета: 1) нельзя постулировать, что гравитоны необратимо преобразуются в какой-либо иной вид энергии или материи, 2) нельзя постулировать, что какой-либо вид материи необратимо преобразуется в гравитоны. В первом случае через какое-то, достаточно большое, время исчезнут все гравитоны, а во втором случае исчезнет вся материя и останутся одни гравитоны.

Что будем выбирать? А выбора нет!

Многие гравитонные теории гравитации основываются на гипотезе Ж.-Л. Лесажа. В 1756 г. Лесаж предложил простую кинетическую теорию гравитации, которая давала объяснение силы в уравнении Ньютона. Из гипотезы Лесажа вытекал закон тяготения в формулировке Ньютона. Кроме того, из данной гипотезы следует конечность радиуса действия сил гравитации, так как на расстоянии, большем длины свободного пробега гравитона, тяготение практически исчезает. В основе гипотезы Лесажа лежит предположение о существовании в природе хаотично движущихся с большими скоростями частиц, которые очень редко сталкиваются между собой, легко проходят через тела, изредка поглощаясь ими или теряя часть энергии при столкновениях с частицами тела. В дальнейшем такие частицы стали называть гравитонами.

Еще немного, и можно окончательно запутаться в дебрях гравитационных гипотез, поэтому нужно закончить этот короткий обзор полевой и геометрической систем подхода к проблеме гравитации, но есть еще одно весьма популярное направление – это теория струн и М-теории, о которых также следует вкратце упомянуть.


1.4.2. Струны


Появление струнной теории гравитации относят к 1968 г., когда два молодых теоретика из ЦЕРНа, Габриэле Венециано и Махико Сузуки, занимались математическим анализом столкновений пионов. Подобные квантовые коллизии описывают с помощью матрицы рассеяния, которая позволяет найти вероятности переходов сталкивающихся частиц из начальных состояний в конечные.

В каждом конкретном случае ее обычно вычисляют лишь с некоторым приближением.

Венециано и Сузуки установили, что амплитуду парного рассеяния высокоэнергетичных пионов с высокой точностью можно вычислить с помощью бета-функции, которую в 1730 г. придумал Леонард Эйлер. Данную функцию используют редко, и церновские физики наткнулись на нее случайно, просматривая математические справочники. Событие вызвало немалый интерес среди других физиков, так как было установлено, что амплитуда пион-пионного рассеяния задается разложением в бесконечный ряд, первый и основной член которого как раз совпадает с формулой Венециано—Сузуки.

Стоило зацепиться, и, как говорят, пошло-поехало.

В 1970 г. квартет физиков: Ёчиро Намбу, Тецуо Гото, Леонард Сасскинд и Хольгер Нильсен обнаружили интересное совпадение. Они вывели ту же формулу, предположив, что взаимодействие между сталкивающимися пионами возникает из-за того, что их соединяет бесконечно тонкая колеблющаяся нить, подчиняющаяся законам квантовой механики. Этот неожиданный результат дал толчок изобретению моделей, представляющих элементарные частицы в виде сверхмикроскопических одномерных камертонов, вибрирующих на определенных нотах. Их-то и стали называть струнами.

В начале зарождения теории струн предполагалось, что она математически корректна только в случае, если пространственно-временной континуум является 26-мерным. Но потом в нее был введен спин, и ее пространство-время сократилось до 10 (девять пространственных измерений и одно временное). Вот тут физики удивились тому, что теория сама выбрала размерность.

Но чего-то опять не хватало для триумфа, тогда, решая струнные уравнения, разомкнутые концы струн замкнули, и получились кольца, которым соответствовали не известные науке безмассовые частицы со спином 2.

В 1974 г. физики Шварц и Шерк заявили, что таинственная и безмассовая частица струнной модели и есть гравитон! Эти же господа подсчитали и длину данной струны: она, по их мнению, должна составлять 10—33см! С такими размерами объектов наука еще не встречалась.

Несмотря на все коллизии и трудности, разработка теории струн, как говорят теоретики, позволила глубже понять структуру предшествующих ей теорий квантовой гравитации.

Ну слава Богу, хоть что-то пошло на пользу. Поэтому данная теория продолжает и дальше разрабатываться, углубляясь в пучину математических и музыкальных метаморфоз. Появились мембраны, потом их для краткости стали называть просто браны, и опять пошел количественный отсчет: 2 браны, 3 браны, p-браны и т. д. Теория струн стала превращаться в теорию бран произвольной размерности – от 1 до 9.

Мембрана – это, очевидно, резонатор, где усиливается музыкальный звук, издаваемый струнами. Далее ждем смычка или медиатора, после чего должна зазвучать долгожданная мелодия гравитации.

На страницу:
2 из 9