
Полная версия
The Notebooks of Leonardo Da Vinci. Complete
[Footnote: See PLINY, Hist. Nat. II, CIII [C]. Itaque Solis ardore siccatur liquor: et hoc esse masculum sidus accepimus, torrens cuncta sorbensque. (cp. CIV.) Sic mari late patenti saporem incoqui salis, aut quia exhausto inde dulci tenuique, quod facillime trahat vis ignea, omne asperius crassiusque linquatur: ideo summa aequorum aqua dulciorem profundam; hanc esse veriorem causam, quam quod mare terrae sudor sit aeternus: aut quia plurimum ex arido misceatur illi vapore: aut quia terrae natura sicut medicatas aquas inficiat … (cp. CV): altissimum mare XV. stadiorum Fabianus tradit. Alii n Ponto coadverso Coraxorum gentis (vocant B Ponti) trecentis fere a continenti stadiis immensam altitudinem maris tradunt, vadis nunquam repertis. (cp. CVI [CIII]) Mirabilius id faciunt aquae dulces, juxta mare, ut fistulis emicantes. Nam nec aquarum natura a miraculis cessat. Dulces mari invehuntur, leviores haud dubie. Ideo et marinae, quarum natura gravior, magis invecta sustinent. Quaedam vero et dulces inter se supermeant alias.]
947
For the third and last reason we will say that salt is in all created things; and this we learn from water passed over the ashes and cinders of burnt things; and the urine of every animal, and the superfluities issuing from their bodies, and the earth into which all things are converted by corruption.
But,—to put it better,—given that the world is everlasting, it must be admitted that its population will also be eternal; hence the human species has eternally been and would be consumers of salt; and if all the mass of the earth were to be turned into salt, it would not suffice for all human food [Footnote 27: That is, on the supposition that salt, once consumed, disappears for ever.]; whence we are forced to admit, either that the species of salt must be everlasting like the world, or that it dies and is born again like the men who devour it. But as experience teaches us that it does not die, as is evident by fire, which does not consume it, and by water which becomes salt in proportion to the quantity dissolved in it,—and when it is evaporated the salt always remains in the original quantity—it must pass through the bodies of men either in the urine or the sweat or other excretions where it is found again; and as much salt is thus got rid of as is carried every year into towns; therefore salt is dug in places where there is urine.– Sea hogs and sea winds are salt.
We will say that the rains which penetrate the earth are what is under the foundations of cities with their inhabitants, and are what restore through the internal passages of the earth the saltness taken from the sea; and that the change in the place of the sea, which has been over all the mountains, caused it to be left there in the mines found in those mountains, &c.
The characteristics of sea water (948. 949).
948
The waters of the salt sea are fresh at the greatest depths.
949
THAT THE OCEAN DOES NOT PENETRATE UNDER THE EARTH.
The ocean does not penetrate under the earth, and this we learn from the many and various springs of fresh water which, in many parts of the ocean make their way up from the bottom to the surface. The same thing is farther proved by wells dug beyond the distance of a mile from the said ocean, which fill with fresh water; and this happens because the fresh water is lighter than salt water and consequently more penetrating.
Which weighs most, water when frozen or when not frozen?
FRESH WATER PENETRATES MORE AGAINST SALT WATER THAN SALT WATER AGAINST FRESH WATER.
That fresh water penetrates more against salt water, than salt water against fresh is proved by a thin cloth dry and old, hanging with the two opposite ends equally low in the two different waters, the surfaces of which are at an equal level; and it will then be seen how much higher the fresh water will rise in this piece of linen than the salt; by so much is the fresh lighter than the salt.
On the formation of Gulfs (950. 951).
950
All inland seas and the gulfs of those seas, are made by rivers which flow into the sea.
951
HERE THE REASON IS GIVEN OF THE EFFECTS PRODUCED BY THE WATERS IN THE ABOVE MENTIONED PLACE.
All the lakes and all the gulfs of the sea and all inland seas are due to rivers which distribute their waters into them, and from impediments in their downfall into the Mediterranean —which divides Africa from Europe and Europe from Asia by means of the Nile and the Don which pour their waters into it. It is asked what impediment is great enough to stop the course of the waters which do not reach the ocean.
On the encroachments of the sea on the land and vice versa (952-954).
952
OF WAVES.
A wave of the sea always breaks in front of its base, and that portion of the crest will then be lowest which before was highest.
[Footnote: The page of FRANCESCO DI GIORGIO'S Trattato, on which Leonardo has written this remark, contains some notes on the construction of dams, harbours &c.]
953
That the shores of the sea constantly acquire more soil towards the middle of the sea; that the rocks and promontories of the sea are constantly being ruined and worn away; that the Mediterranean seas will in time discover their bottom to the air, and all that will be left will be the channel of the greatest river that enters it; and this will run to the ocean and pour its waters into that with those of all the rivers that are its tributaries.
954
How the river Po, in a short time might dry up the Adriatic sea in the same way as it has dried up a large part of Lombardy.
The ebb and flow of the tide (955-960).
955
Where there is a larger quantity of water, there is a greater flow and ebb, but the contrary in narrow waters.
Look whether the sea is at its greatest flow when the moon is half way over our hemisphere [on the meridian].
956
Whether the flow and ebb are caused by the moon or the sun, or are the breathing of this terrestrial machine. That the flow and ebb are different in different countries and seas.
[Footnote: 1. Allusion may here be made to the mythological explanation of the ebb and flow given in the Edda. Utgardloki says to Thor (Gylfaginning 48): "When thou wert drinking out of the horn, and it seemed to thee that it was slow in emptying a wonder befell, which I should not have believed possible: the other end of the horn lay in the sea, which thou sawest not; but when thou shalt go to the sea, thou shalt see how much thou hast drunk out of it. And that men now call the ebb tide."
Several passages in various manuscripts treat of the ebb and flow. In collecting them I have been guided by the rule only to transcribe those which named some particular spot.]
957
Book 9 of the meeting of rivers and their flow and ebb. The cause is the same in the sea, where it is caused by the straits of Gibraltar. And again it is caused by whirlpools.
958
OF THE FLOW AND EBB.
All seas have their flow and ebb in the same period, but they seem to vary because the days do not begin at the same time throughout the universe; in such wise as that when it is midday in our hemisphere, it is midnight in the opposite hemisphere; and at the Eastern boundary of the two hemispheres the night begins which follows on the day, and at the Western boundary of these hemispheres begins the day, which follows the night from the opposite side. Hence it is to be inferred that the above mentioned swelling and diminution in the height of the seas, although they take place in one and the same space of time, are seen to vary from the above mentioned causes. The waters are then withdrawn into the fissures which start from the depths of the sea and which ramify inside the body of the earth, corresponding to the sources of rivers, which are constantly taking from the bottom of the sea the water which has flowed into it. A sea of water is incessantly being drawn off from the surface of the sea. And if you should think that the moon, rising at the Eastern end of the Mediterranean sea must there begin to attract to herself the waters of the sea, it would follow that we must at once see the effect of it at the Eastern end of that sea. Again, as the Mediterranean sea is about the eighth part of the circumference of the aqueous sphere, being 3000 miles long, while the flow and ebb only occur 4 times in 24 hours, these results would not agree with the time of 24 hours, unless this Mediterranean sea were six thousand miles in length; because if such a superabundance of water had to pass through the straits of Gibraltar in running behind the moon, the rush of the water through that strait would be so great, and would rise to such a height, that beyond the straits it would for many miles rush so violently into the ocean as to cause floods and tremendous seething, so that it would be impossible to pass through. This agitated ocean would afterwards return the waters it had received with equal fury to the place they had come from, so that no one ever could pass through those straits. Now experience shows that at every hour they are passed in safety, but when the wind sets in the same direction as the current, the strong ebb increases [Footnote 23: In attempting to get out of the Mediterranean, vessels are sometimes detained for a considerable time; not merely by the causes mentioned by Leonardo but by the constant current flowing eastwards through the middle of the straits of Gibraltar.]. The sea does not raise the water that has issued from the straits, but it checks them and this retards the tide; then it makes up with furious haste for the time it has lost until the end of the ebb movement.
959
That the flow and ebb are not general; for on the shore at Genoa there is none, at Venice two braccia, between England and Flanders 18 braccia. That in the straits of Sicily the current is very strong because all the waters from the rivers that flow into the Adriatic pass there.
[Footnote: A few more recent data may be given here to facilitate comparison. In the Adriatic the tide rises 2 and 1/2 feet, at Terracina 1 1/4. In the English channel between Calais and Kent it rises from 18 to 20 feet. In the straits of Messina it rises no more than 2 1/2 feet, and that only in stormy weather, but the current is all the stronger. When Leonardo accounts for this by the southward flow of all the Italian rivers along the coasts, the explanation is at least based on a correct observation; namely that a steady current flows southwards along the coast of Calabria and another northwards, along the shores of Sicily; he seems to infer, from the direction of the fust, that the tide in the Adriatic is caused by it.]
960
In the West, near to Flanders, the sea rises and decreases every 6 hours about 20 braccia, and 22 when the moon is in its favour; but 20 braccia is the general rule, and this rule, as it is evident, cannot have the moon for its cause. This variation in the increase and decrease of the sea every 6 hours may arise from the damming up of the waters, which are poured into the Mediterranean by the quantity of rivers from Africa, Asia and Europe, which flow into that sea, and the waters which are given to it by those rivers; it pours them to the ocean through the straits of Gibraltar, between Abila and Calpe [Footnote 5: Abila, Lat. Abyla, Gr. , now Sierra Ximiera near Ceuta; Calpe, Lat. Calpe. Gr., now Gibraltar. Leonardo here uses the ancient names of the rocks, which were known as the Pillars of Hercules.]. That ocean extends to the island of England and others farther North, and it becomes dammed up and kept high in various gulfs. These, being seas of which the surface is remote from the centre of the earth, have acquired a weight, which as it is greater than the force of the incoming waters which cause it, gives this water an impetus in the contrary direction to that in which it came and it is borne back to meet the waters coming out of the straits; and this it does most against the straits of Gibraltar; these, so long as this goes on, remain dammed up and all the water which is poured out meanwhile by the aforementioned rivers, is pent up [in the Mediterranean]; and this might be assigned as the cause of its flow and ebb, as is shown in the 21st of the 4th of my theory.
IIISUBTERRANEAN WATER COURSESTheory of the circulation of the waters (961. 962).
961
Very large rivers flow under ground.
962
This is meant to represent the earth cut through in the middle, showing the depths of the sea and of the earth; the waters start from the bottom of the seas, and ramifying through the earth they rise to the summits of the mountains, flowing back by the rivers and returning to the sea.
Observations in support of the hypothesis (963-969).
963
The waters circulate with constant motion from the utmost depths of the sea to the highest summits of the mountains, not obeying the nature of heavy matter; and in this case it acts as does the blood of animals which is always moving from the sea of the heart and flows to the top of their heads; and here it is that veins burst—as one may see when a vein bursts in the nose, that all the blood from below rises to the level of the burst vein. When the water rushes out of a burst vein in the earth it obeys the nature of other things heavier than the air, whence it always seeks the lowest places. [7] These waters traverse the body of the earth with infinite ramifications.
[Footnote: The greater part of this passage has been given as No. 849 in the section on Anatomy.]
964
The same cause which stirs the humours in every species of animal body and by which every injury is repaired, also moves the waters from the utmost depth of the sea to the greatest heights.
965
It is the property of water that it constitutes the vital human of this arid earth; and the cause which moves it through its ramified veins, against the natural course of heavy matters, is the same property which moves the humours in every species of animal body. But that which crowns our wonder in contemplating it is, that it rises from the utmost depths of the sea to the highest tops of the mountains, and flowing from the opened veins returns to the low seas; then once more, and with extreme swiftness, it mounts again and returns by the same descent, thus rising from the inside to the outside, and going round from the lowest to the highest, from whence it rushes down in a natural course. Thus by these two movements combined in a constant circulation, it travels through the veins of the earth.
966
WHETHER WATER RISES FROM THE SEA TO THE TOPS OF MOUNTAINS.
The water of the ocean cannot make its way from the bases to the tops of the mountains which bound it, but only so much rises as the dryness of the mountain attracts. And if, on the contrary, the rain, which penetrates from the summit of the mountain to the base, which is the boundary of the sea, descends and softens the slope opposite to the said mountain and constantly draws the water, like a syphon [Footnote 11: Cicognola, Syphon. See Vol. I, Pl. XXIV, No. 1.] which pours through its longest side, it must be this which draws up the water of the sea; thus if s n were the surface of the sea, and the rain descends from the top of the mountain a to n on one side, and on the other sides it descends from a to m, without a doubt this would occur after the manner of distilling through felt, or as happens through the tubes called syphons [Footnote 17: Cicognola, Syphon. See Vol. I, Pl. XXIV, No. 1.]. And at all times the water which has softened the mountain, by the great rain which runs down the two opposite sides, would constantly attract the rain a n, on its longest side together with the water from the sea, if that side of the mountain a m were longer than the other a n; but this cannot be, because no part of the earth which is not submerged by the ocean can be lower than that ocean.
967
OF SPRINGS OF WATER ON THE TOPS OF MOUNTAINS.
It is quite evident that the whole surface of the ocean—when there is no storm—is at an equal distance from the centre of the earth, and that the tops of the mountains are farther from this centre in proportion as they rise above the surface of that sea; therefore if the body of the earth were not like that of man, it would be impossible that the waters of the sea—being so much lower than the mountains—could by their nature rise up to the summits of these mountains. Hence it is to be believed that the same cause which keeps the blood at the top of the head in man keeps the water at the summits of the mountains.
[Footnote: This conception of the rising of the blood, which has given rise to the comparison, was recognised as erroneous by Leonardo himself at a later period. It must be remembered that the MS. A, from which these passages are taken, was written about twenty years earlier than the MS. Leic. (Nos. 963 and 849) and twenty-five years before the MS. W. An. IV.
There is, in the original a sketch with No. 968 which is not reproduced. It represents a hill of the same shape as that shown at No. 982. There are veins, or branched streams, on the side of the hill, like those on the skull Pl. CVIII, No. 4]
968
IN CONFIRMATION OF WHY THE WATER GOES TO THE TOPS OF MOUNTAINS.
I say that just as the natural heat of the blood in the veins keeps it in the head of man,—for when the man is dead the cold blood sinks to the lower parts—and when the sun is hot on the head of a man the blood increases and rises so much, with other humours, that by pressure in the veins pains in the head are often caused; in the same way veins ramify through the body of the earth, and by the natural heat which is distributed throughout the containing body, the water is raised through the veins to the tops of mountains. And this water, which passes through a closed conduit inside the body of the mountain like a dead thing, cannot come forth from its low place unless it is warmed by the vital heat of the spring time. Again, the heat of the element of fire and, by day, the heat of the sun, have power to draw forth the moisture of the low parts of the mountains and to draw them up, in the same way as it draws the clouds and collects their moisture from the bed of the sea.
969
That many springs of salt water are found at great distances from the sea; this might happen because such springs pass through some mine of salt, like that in Hungary where salt is hewn out of vast caverns, just as stone is hewn.
[Footnote: The great mine of Wieliczka in Galicia, out of which a million cwt. of rock-salt are annually dug out, extends for 3000 metres from West to East, and 1150 metres from North to South.]
IVOF RIVERSOn the way in which the sources of rivers are fed.
970
OF THE ORIGIN OF RIVERS.
The body of the earth, like the bodies of animals, is intersected with ramifications of waters which are all in connection and are constituted to give nutriment and life to the earth and to its creatures. These come from the depth of the sea and, after many revolutions, have to return to it by the rivers created by the bursting of these springs; and if you chose to say that the rains of the winter or the melting of the snows in summer were the cause of the birth of rivers, I could mention the rivers which originate in the torrid countries of Africa, where it never rains—and still less snows—because the intense heat always melts into air all the clouds which are borne thither by the winds. And if you chose to say that such rivers, as increase in July and August, come from the snows which melt in May and June from the sun's approach to the snows on the mountains of Scythia [Footnote 9: Scythia means here, as in Ancient Geography, the whole of the Northern part of Asia as far as India.], and that such meltings come down into certain valleys and form lakes, into which they enter by springs and subterranean caves to issue forth again at the sources of the Nile, this is false; because Scythia is lower than the sources of the Nile, and, besides, Scythia is only 400 miles from the Black sea and the sources of the Nile are 3000 miles distant from the sea of Egypt into which its waters flow.
The tide in estuaries.
971
Book 9, of the meeting of rivers and of their ebb and flow. The cause is the same in the sea, where it is caused by the straits of Gibraltar; and again it is caused by whirlpools.
[3] If two rivers meet together to form a straight line, and then below two right angles take their course together, the flow and ebb will happen now in one river and now in the other above their confluence, and principally if the outlet for their united volume is no swifter than when they were separate. Here occur 4 instances.
[Footnote: The first two lines of this passage have already been given as No. 957. In the margin, near line 3 of this passage, the text given as No. 919 is written.]
On the alterations, caused in the courses of rivers by their confluence (972-974).
972
When a smaller river pours its waters into a larger one, and that larger one flows from the opposite direction, the course of the smaller river will bend up against the approach of the larger river; and this happens because, when the larger river fills up all its bed with water, it makes an eddy in front of the mouth of the other river, and so carries the water poured in by the smaller river with its own. When the smaller river pours its waters into the larger one, which runs across the current at the mouth of the smaller river, its waters will bend with the downward movement of the larger river. [Footnote: In the original sketches the word Arno is written at the spot here marked A, at R. Rifredi, and at M. Mugnone.]
973
When the fulness of rivers is diminished, then the acute angles formed at the junction of their branches become shorter at the sides and wider at the point; like the current a n and the current d n, which unite in n when the river is at its greatest fulness. I say, that when it is in this condition if, before the fullest time, d n was lower than a n, at the time of fulness d n will be full of sand and mud. When the water d n falls, it will carry away the mud and remain with a lower bottom, and the channel a n finding itself the higher, will fling its waters into the lower, d n, and will wash away all the point of the sand-spit b n c, and thus the angle a c d will remain larger than the angle a n d and the sides shorter, as I said before.
[Footnote: Above the first sketch we find, in the original, this note: "Sopra il pote rubaconte alla torricella"; and by the second, which represents a pier of a bridge, "Sotto l'ospedal del ceppo."]
974
WATER.
OF THE MOVEMENT OF A SUDDEN RUSH MADE BY A RIVER IN ITS BED PREVIOUSLY DRY.
In proportion as the current of the water given forth by the draining of the lake is slow or rapid in the dry river bed, so will this river be wider or narrower, or shallower or deeper in one place than another, according to this proposition: the flow and ebb of the sea which enters the Mediterranean from the ocean, and of the rivers which meet and struggle with it, will raise their waters more or less in proportion as the sea is wider or narrower.
[Footnote: In the margin is a sketch of a river which winds so as to form islands.]
Whirlpools.
975
Whirlpools, that is to say caverns; that is to say places left by precipitated waters.
On the alterations in the channels of rivers.
976
OF THE VIBRATION OF THE EARTH.