bannerbanner
Myths and Marvels of Astronomy
Myths and Marvels of Astronomyполная версия

Полная версия

Настройки чтения
Размер шрифта
Высота строк
Поля
На страницу:
12 из 27

Those who care to look occasionally at the heavens to know whether this star has returned to view may be interested to learn whereabouts it should be looked for. The place may be described as close to the back of the star-gemmed chair in which Cassiopeia is supposed to sit—a little to the left of the seat of the chair, supposing the chair to be looked at in its normal position. But as Cassiopeia's chair is always inverted when the constellation is most conveniently placed for observation, and indeed as nine-tenths of those who know the constellation suppose the chair's legs to be the back, and vice versâ, it may be useful to mention that the star was placed somewhat thus with respect to the straggling W formed by the five chief stars of Cassiopeia. There is a star not very far from the place here indicated, but rather nearer to the middle angle of the W. This, however, is not a bright star; and cannot possibly be mistaken for the expected visitant. (The place of Tycho's star is indicated in my School Star-Atlas and also in my larger Library Atlas. The same remark applies to both the new stars in the Serpent-Bearer, presently to be described.)



In August 1596 the astronomer Fabricius observed a new star in the neck of the Whale, which also after a time disappeared. It was not noticed again till the year 1637, when an observer rejoicing in the name of Phocyllides Holwarda observed it, and, keeping a watch, after it had vanished, upon the place where it had appeared, saw it again come into view nine months after its disappearance. Since then it has been known as a variable star with a period of about 331 days 8 hours. When brightest this star is of the second magnitude. It indicates a somewhat singular remissness on the part of the astronomers of former days, that a star shining so conspicuously for a fortnight, once in each period of 331-1⁄3 days, should for so many years have remained undetected. It may, perhaps, be thought that, noting this, I should withdraw the objection raised above against Sir J. Herschel's idea that the star in Cassiopeia may return to view once in 156 years, instead of once in 312 years. But there is a great difference between a star which at its brightest shines only as a second-magnitude star, so that it has twenty or thirty companions of equal or greater lustre above the horizon along with it, and a star which surpasses three-fold the splendid Sirius. We have seen that even in Tycho Brahe's day, when probably the stars were not nearly so well known by the community at large, the new star in Cassiopeia had not shone an hour before the country people were gazing at it with wonder. Besides, Cassiopeia and the Whale are constellations very different in position. The familiar stars of Cassiopeia are visible on every clear night, for they never set. The stars of the Whale, at least of the part to which the wonderful variable star belongs, are below the horizon during rather more than half the twenty-four hours; and a new star there would only be noticed, probably (unless of exceeding splendour), if it chanced to appear during that part of the year when the Whale is high above the horizon between eventide and midnight, or in the autumn and early winter.

It is a noteworthy circumstance about the variable star in the Whale, deservedly called Mira, or The Wonderful, that it does not always return to the same degree of brightness. Sometimes it has been a very bright second-magnitude star when at its brightest, at others it has barely exceeded the third magnitude. Hevelius relates that during the four years between October 1672 and December 1676, Mira did not show herself at all! As this star fades out, it changes in colour from white to red.

Towards the end of September 1604, a new star made its appearance in the constellation Ophiuchus, or the Serpent-Bearer. Its place was near the heel of the right foot of 'Ophiuchus huge.' Kepler tells us that it had no hair or tail, and was certainly not a comet. Moreover, like the other fixed stars, it kept its place unchanged, showing unmistakably that it belonged to the star-depths, not to nearer regions. 'It was exactly like one of the stars, except that in the vividness of its lustre, and the quickness of its sparkling, it exceeded anything that he had ever seen before. It was every moment changing into some of the colours of the rainbow, as yellow, orange, purple, and red; though it was generally white when it was at some distance from the vapours of the horizon.' In fact, these changes of colour must not be regarded as indicating aught but the star's superior brightness. Every very bright star, when close to the horizon, shows these colours, and so much the more distinctly as the star is the brighter. Sirius, which surpasses the brightest stars of the northern hemisphere full four times in lustre, shows these changes of colour so conspicuously that they were regarded as specially characteristic of this star, insomuch that Homer speaks of Sirius (not by name, but as the 'star of autumn') shining most beautifully 'when laved of ocean's wave'—that is, when close to the horizon. And our own poet, Tennyson, following the older poet, sings how

the fiery Sirius alters hue,And bickers into red and emerald.

The new star was brighter than Sirius, and was about five degrees lower down, when at its highest above the horizon, than Sirius when he culminates. Five degrees being equal to nearly ten times the apparent diameter of the moon, it will be seen how much more favourable the conditions were in the case of Kepler's star for those coloured scintillations which characterised that orb. Sirius never rises very high above the horizon. In fact, at his highest (near midnight in winter, and, of course, near midday in summer) he is about as high above the horizon as the sun at midday in the first week in February. Kepler's star's greatest height above the horizon was little more than three-fourths of this, or equal to about the sun's elevation at midday on January 13 or 14 in any year.

Like Tycho Brahe's star, Kepler's was brighter even than Jupiter, and only fell short of Venus in splendour. It preserved its lustre for about three weeks, after which time it gradually grew fainter and fainter until some time between October 1605 and February 1606, when it disappeared. The exact day is unknown, as during that interval the constellation of the Serpent-Bearer is above the horizon in the day-time only. But in February 1606, when it again became possible to look for the new star in the night-time, it had vanished. It probably continued to glow with sufficient lustre to have remained visible, but for the veil of light under which the sun concealed it, for about sixteen months altogether. In fact, it seems very closely to have resembled Tycho's star, not only in appearance and in the degree of its greatest brightness, but in the duration of its visibility.

In the year 1670 a new star appeared in the constellation Cygnus, attaining the third magnitude. It remained visible, but not with this lustre, for nearly two years. After it had faded almost out of view, it flickered up again for awhile, but soon after it died out, so as to be entirely invisible. Whether a powerful telescope would still have shown it is uncertain, but it seems extremely probable. It may be, indeed, that this new star in the Swan is the same which has made its appearance within the last few weeks; but on this point the evidence is uncertain.

On April 20, 1848, Mr. Hind (Superintendent of the Nautical Almanac, and discoverer of ten new members of the solar system) noticed a new star of the fifth magnitude in the Serpent-Bearer, but in quite another part of that large constellation than had been occupied by Kepler's star. A few weeks later, it rose to the fourth magnitude. But afterwards its light diminished until it became invisible to ordinary eyesight. It did not vanish utterly, however. It is still visible with telescopic power, shining as a star of the eleventh magnitude, that is five magnitudes below the faintest star discernible with the unaided eye.

This is the first new star which has been kept in view since its apparent creation. But we are now approaching the time when it was found that as so-called new stars continue in existence long after they have disappeared from view, so also they are not in reality new, but were in existence long before they became visible to the naked eye.

On May 12, 1866, shortly before midnight, Mr. Birmingham, of Tuam, noticed a star of the second magnitude in the Northern Crown, where hitherto no star visible to the naked eye had been known. Dr. Schmidt, of Athens, who had been observing that region of the heavens the same night, was certain that up to 11 p.m., Athens local time, there was no star above the fourth magnitude in the place occupied by the new star. So that, if this negative evidence can be implicitly relied on, the new star must have sprung at least from the fourth, and probably from a much lower magnitude, to the second, in less than three hours—eleven o'clock at Athens corresponding to about nine o'clock by Irish railway time. A Mr. Barker, of London, Canada, put forward a claim to having seen the new star as early as May 4—a claim not in the least worth investigating, so far as the credit of first seeing the new star is concerned, but exceedingly important in its bearing on the nature of the outburst affecting the star in Corona. It is unpleasant to have to throw discredit on any definite assertion of facts; unfortunately, however, Mr. Barker, when his claim was challenged, laid before Mr. Stone, of the Greenwich Observatory, such very definite records of observations made on May 4, 8, 9, and 10, that we have no choice but either to admit these observations, or to infer that he experienced the delusive effects of a very singular trick of memory. He mentions in his letter to Mr. Stone that he had sent full particulars of his observations on those early dates to Professor Watson, of Ann Arbor University, on May 17; but (again unfortunately) instead of leaving that letter to tell its own story in Professor Watson's hands, he asked Professor Watson to return it to him: so that when Mr. Stone very naturally asked Professor Watson to furnish a copy of this important letter, Professor Watson had to reply, 'About a month ago, Mr. Barker applied to me for this letter, and I returned it to him, as requested, without preserving a copy. I can, however,' he proceeded, 'state positively that he did not mention any actual observation earlier than May 14. He said he thought he had noticed a strange star in the Crown about two weeks before the date of his first observation—May 14—but not particularly, and that he did not recognise it until the 14th. He did not give any date, and did not even seem positive as to identity.... When I returned the letter of May 17, I made an endorsement across the first page, in regard to its genuineness, and attached my signature. I regret that I did not preserve a copy of the letter in question; but if the original is produced, it will appear that my recollection of its contents is correct.' I think no one can blame Mr. Stone, if, on the receipt of this letter, he stated that he had not the 'slightest hesitation' in regarding Mr. Barker's earlier observations as 'not entitled to the slightest credit.'33

It may be fairly taken for granted that the new star leapt very quickly, if not quite suddenly, to its full splendour. Birmingham, as we have seen, was the first to notice it, on May 12. On the evening of May 13, Schmidt of Athens discovered it independently, and a few hours later it was noticed by a French engineer named Courbebaisse. Afterwards, Baxendell of Manchester, and others independently saw the star. Schmidt, examining Argelander's charts of 324,000 stars (charts which I have had the pleasure of mapping in a single sheet), found that the star was not a new one, but had been set down by Argelander as between the ninth and tenth magnitudes. Referring to Argelander's list, we find that the star had been twice observed—viz., on May 18, 1855, and on March 31, 1856.

Birmingham wrote at once to Mr. Huggins, who, in conjunction with the late Dr. Miller, had been for some time engaged in observing stars and other celestial objects with the spectroscope. These two observers at once directed their telescope armed with spectroscopic adjuncts—the telespectroscope is the pleasing name of the compound instrument—to the new-comer. The result was rather startling. It may be well, however, before describing it, to indicate in a few words the meaning of various kinds of spectroscopic evidence.

The light of the sun, sifted out by the spectroscope, shows all the colours but not all the tints of the rainbow. It is spread out into a large rainbow-tinted streak, but at various places (a few thousand) along the streak there are missing tints; so that in fact the streak is crossed by a multitude of dark lines. We know that these lines are due to the absorptive action of vapours existing in the atmosphere of the sun, and from the position of the lines we can tell what the vapours are. Thus, hydrogen by its absorptive action produces four of the bright lines. The vapour of iron is there, the vapour of sodium, magnesium, and so on. Again, we know that these same vapours, which, by their absorptive action, cut off rays of certain tints, emit light of just those tints. In fact, if the glowing mass of the sun could be suddenly extinguished, leaving his atmosphere in its present intensely heated condition, the light of the faint sun which would thus be left us would give (under spectroscopic scrutiny) those very rays which now seem wanting. There would be a spectrum of multitudinous bright lines, instead of a rainbow-tinted spectrum crossed by multitudinous dark lines. It is, indeed, only by contrast that the dark lines appear dark, just as it is only by contrast that the solar spots seem dark. Not only the penumbra but the umbra of a sun-spot, not only the umbra but the nucleus, not only the nucleus but the deeper black which seems to lie at the core of the nucleus, shine really with a lustre far exceeding that of the electric light, though by contrast with the rest of the sun's surface the penumbra looks dark, the umbra darker still, the nucleus deep black, and the core of the nucleus jet black. So the dark lines across the solar spectrum mark where certain rays are relatively faint, though in reality intensely lustrous. Conceive another change than that just imagined. Conceive the sun's globe to remain as at present, but the atmosphere to be excited to many times its present degree of light and splendour: then would all these dark lines become bright, and the rainbow-tinted background would be dull or even quite dark by contrast. This is not a mere fancy. At times, local disturbances take place in the sun which produce just such a change in certain constituents of the sun's atmosphere, causing the hydrogen, for example, to glow with so intense a heat that, instead of its lines appearing dark, they stand out as bright lines. Occasionally, too, the magnesium in the solar atmosphere (over certain limited regions only, be it remembered) has been known to behave in this manner. It was so during the intensely hot summer of 1872, insomuch that the Italian observer Tacchini, who noticed the phenomenon, attributed to such local overheating of the sun's magnesium vapour the remarkable heat from which we then for a time suffered.

Now, the stars are suns, and the spectrum of a star is simply a miniature of the solar spectrum. Of course, there are characteristic differences. One star has more hydrogen, at least more hydrogen at work absorbing its rays, and thus has the hydrogen lines more strongly marked than they are in the solar spectrum. Another star shows the lines of various metals more conspicuously, indicating that the glowing vapours of such elements, iron, copper, mercury, tin, and so forth, either hang more densely in the star's atmosphere than in our sun's, or, being cooler, absorb their special tints more effectively. But speaking generally, a stellar spectrum is like the solar spectrum. There is the rainbow-tinted streak, which implies that the source of light is glowing solid, liquid, or highly compressed vaporous matter, and athwart the streak there are the multitudinous dark lines which imply that around the glowing heart of the star there are envelopes of relatively cool vapours.

We can understand, then, the meaning of the evidence obtained from the new star in the Northern Crown.

In the first place, the new star showed the rainbow-tinted streak crossed by dark lines, which indicated its sun-like nature. But, standing out on that rainbow-tinted streak as on a dark background, were four exceedingly bright lines—lines so bright, though fine, that clearly most of the star's light came from the glowing vapours to which these lines belonged. Three of the lines belonged to hydrogen, the fourth was not identified with any known line.

Let us distinguish between what can certainly be concluded from this remarkable observation, and what can only be inferred with a greater or less degree of probability.

It is absolutely certain that when Messrs. Huggins and Miller made their observation (by which time the new star had faded from the second to the third magnitude), enormous masses of hydrogen around the star were glowing with a heat far more intense than that of the star itself within the hydrogen envelope. It is certain that the increase in the star's light, rendering the star visible which before had been far beyond the range of ordinary eyesight, was due to the abnormal heat of the hydrogen surrounding that remote sun.

But it is not so clear whether the intense glow of the hydrogen was caused by combustion or by intense heat without combustion. The difference between the two causes of increased light is important; because on the opinion we form on this point must depend our opinion as to the probability that our sun may one day experience a similar catastrophe, and also our opinion as to the state of the sun in the Northern Crown after the outburst. To illustrate the distinction in question, let us take two familiar cases of the emission of light. A burning coal glows with red light, and so does a piece of iron placed in a coal fire. But the coal and the iron are undergoing very different processes. The coal is burning, and will presently be consumed; the iron is not burning (except in the sense that it is burning hot, which means only that it will make any combustible substance burn which is brought into contact with it), and it will not be consumed though the coal fire be maintained around it for days and weeks and months. So with the hydrogen flames which play at all times over the surface of our own sun. They are not burning like the hydrogen flames which are used for the oxy-hydrogen lantern. Were the solar hydrogen so burning, the sun would quickly be extinguished. They are simply aglow with intensity of heat, as a mass of red-hot iron is aglow; and, so long as the sun's energies are maintained, the hydrogen around him will glow in this way without being consumed. As the new fires of the star in the Crown died out rapidly, it is possible that in their case there was actual combustion. On the other hand, it is also possible, and perhaps on the whole more probable, that the hydrogen surrounding the star was simply set glowing with increased lustre owing to some cause not as yet ascertained.

Let us see how these two theories have been actually worded by the students of science themselves who have maintained them.

'The sudden blazing forth of this star,' says Mr. Huggins, 'and then the rapid fading away of its light, suggest the rather bold speculation that in consequence of some great internal convulsion, a large volume of hydrogen and other gases was evolved from it, the hydrogen, by its combination with some other element,' in other words, by burning, 'giving out the light represented by the bright lines, and at the same time heating to the point of vivid incandescence the solid matter of the star's surface.' 'As the liberated hydrogen gas became exhausted' (I now quote not Huggins's own words, but words describing his theory in a book which he has edited) 'the flame gradually abated, and, with the consequent cooling, the star's surface became less vivid, and the star returned to its original condition.'

On the other hand, the German physicists, Meyer and Klein, consider the sudden development of hydrogen, in quantities sufficient to explain such an outburst, exceedingly unlikely. They have therefore adopted the opinion, that the sudden blazing out of the star was occasioned by the violent precipitation of some mighty mass, perhaps a planet, upon the globe of that remote sun, 'by which the momentum of the falling mass would be changed into molecular motion, or in other words into heat and light.' It might even be supposed, they urge, that the star in the Crown, by its swift motion, may have come in contact with one of the star clouds which exist in large numbers in the realms of space. 'Such a collision would necessarily set the star in a blaze and occasion the most vehement ignition of its hydrogen.'

Fortunately, our sun is safe for many millions of years to come from contact from any one of its planets. The reader must not, however, run away with the idea that the danger consists only in the gradual contraction of planetary orbits sometimes spoken of. That contraction, if it is taking place at all, of which we have not a particle of evidence, would not draw Mercury to the sun's surface for at least ten million millions of years. The real danger would be in the effects which the perturbing action of the larger planets might produce on the orbit of Mercury. That orbit is even now very eccentric, and must at times become still more so. It might, but for the actual adjustment of the planetary system, become so eccentric that Mercury could not keep clear of the sun; and a blow from even small Mercury (only weighing, in fact, 390 millions of millions of millions of tons), with a velocity of some 300 miles per second, would warm our sun considerably. But there is no risk of this happening in Mercury's case—though the unseen and much more shifty Vulcan (in which planet I beg to express here my utter disbelief) might, perchance, work mischief if he really existed.

As for star clouds lying in the sun's course, we may feel equally confident. The telescope assures us that there are none immediately on the track, and we know, also, that, swiftly though the sun is carrying us onwards through space,34 many millions of years must pass before he is among the star families towards which he is rushing.

Of the danger from combustion, or from other causes of ignition than those considered by Meyer and Klein, it still remains to speak. But first, let us consider what new evidence has been thrown upon the subject by the observations made on the star which flamed out last November.

The new star was first seen by Professor Schmidt, who has had the good fortune of announcing to astronomers more than one remarkable phenomenon. It was he who discovered in November 1866 that a lunar crater had disappeared, an announcement quite in accordance with the facts of the case. We have seen that he was one of the independent discoverers of the outburst in the Northern Crown. On November 24, at the early hour of 5.41 in the evening (showing that Schmidt takes time by the forelock at his observatory), he noticed a star of the third magnitude in the constellation of the Swan, not far from the tail of that southward-flying celestial bird. He is quite sure that on November 20, the last preceding clear evening, the star was not there. At midnight its light was very yellow, and it was somewhat brighter than the neighbouring star Eta Pegasi, on the Flying Horse's southernmost knee (if anatomists will excuse my following the ordinary usage which calls the wrist of the horse's fore-arm the knee). He sent news of the discovery forthwith to Leverrier, the chief of the Paris observatory; and the observers there set to work to analyse the light of the stranger. Unfortunately the star's suddenly acquired brilliancy rapidly faded. M. Paul Henry estimated the star's brightness on December 2 as equal only to that of a fifth-magnitude star. Moreover, the colour, which had been very yellow on November 24, was by this time 'greenish, almost blue.' On December 2, M. Cornu, observing during a short time when the star was visible through a break between clouds, found that the star's spectrum consisted almost entirely of bright lines. On December 5, he was able to determine the position of these lines, though still much interrupted by clouds. He found three bright lines of hydrogen, the strong (really double) line of sodium, the (really triple) line of magnesium, and two other lines. One of these last seemed to agree exactly in position with a bright line belonging to the corona seen around the sun during total eclipse.35

На страницу:
12 из 27