
Полная версия
The Mind and Its Education
6. FORMS OF SENSORY STIMULI
Let us next inquire how this mechanism of the nervous system is acted upon in such a way as to give us sensations. In order to understand this, we must first know that all forms of matter are composed of minute atoms which are in constant motion, and by imparting this motion to the air or the ether which surrounds them, are constantly radiating energy in the form of minute waves throughout space. These waves, or radiations, are incredibly rapid in some instances and rather slow in others. In sending out its energy in the form of these waves, the physical world is doing its part to permit us to form its acquaintance. The end-organs of the sensory nerves must meet this advance half-way, and be so constructed as to be affected by the different forms of energy which are constantly beating upon them.

Fig. 14.—The prism's analysis of a bundle of light rays. On the right are shown the relation of vibration rates to temperature stimuli, to light and to chemical stimuli. The rates are given in billions per second.—After Witmer.
The End-organs and Their Response to Stimuli.—Thus the radiations of ether from the sun, our chief source of light, are so rapid that billions of them enter the eye in a second of time, and the retina is of such a nature that its nerve cells are thrown into activity by these waves; the impulse is carried over the optic nerve to the occipital lobe of the cortex, and the sensation of sight is the result. The different colors also, from the red of the spectrum to the violet, are the result of different vibration rates in the waves of ether which strike the retina; and in order to perceive color, the retina must be able to respond to the particular vibration rate which represents each color. Likewise in the sense of touch the end-organs are fitted to respond to very rapid vibrations, and it is possible that the different qualities of touch are produced by different vibration rates in the atoms of the object we are touching. When we reach the ear, we have the organ which responds to the lowest vibration rate of all, for we can detect a sound made by an object which is vibrating from twenty to thirty times a second. The highest vibration rate which will affect the ear is some forty thousand per second.
Thus it is seen that there are great gaps in the different rates to which our senses are fitted to respond—a sudden drop from billions in the case of the eye to millions in touch, and to thousands or even tens in hearing. This makes one wonder whether there are not many things in nature which man has never discovered simply because he has not the sense mechanism enabling him to become conscious of their existence. There are undoubtedly "more things in heaven and earth than are dreamt of in our philosophy."
Dependence of the Mind on the Senses.—Only as the senses bring in the material, has the mind anything with which to build. Thus have the senses to act as messengers between the great outside world and the brain; to be the servants who shall stand at the doorways of the body—the eyes, the ears, the finger tips—each ready to receive its particular kind of impulse from nature and send it along the right path to the part of the cortex where it belongs, so that the mind can say, "A sight," "A sound," or "A touch." Thus does the mind come to know the universe of the senses. Thus does it get the material out of which memory, imagination, and thought begin. Thus and only thus does the mind secure the crude material from which the finished superstructure is finally built.
CHAPTER IV
Education was long looked upon as affecting the mind only; the body was either left out of account or neglected. Later science has shown, however, that the mind cannot be trained except as the nervous system is trained and developed. For not sensation and the simpler mental processes alone, but memory, imagination, judgment, reasoning and every other act of the mind are dependent on the nervous system finally for their efficiency. The little child gets its first mental experiences in connection with certain movements or acts set up reflexly by the pre-organized nervous system. From this time on movement and idea are so inextricably bound together that they cannot be separated. The mind and the brain are so vitally related that it is impossible to educate one without performing a like office for the other; and it is likewise impossible to neglect the one without causing the other to suffer in its development.
1. FACTORS DETERMINING THE EFFICIENCY OF THE NERVOUS SYSTEM
Development and Nutrition.—Ignoring the native differences in nervous systems through the influence of heredity, the efficiency of a nervous system is largely dependent on two factors: (1) The development of the cells and fibers of which it is composed, and (2) its general tone of health and vigor. The actual number of cells in the nervous system increases but little if at all after birth. Indeed, it is doubtful whether Edison's brain and nervous system has a greater number of cells in it than yours or mine. The difference between the brain of a genius and that of an ordinary man is not in the number of cells which it contains, but rather in the development of the cells and fibers which are present, potentially, at least, in every nervous system. The histologist tells us that in the nervous system of every child there are tens of thousands of cells which are so immature and undeveloped that they are useless; indeed, this is the case to some degree in every adult person's nervous system as well. Thus each individual has inherent in his nervous system potentialities of which he has never taken advantage, the utilizing of which may make him a genius and the neglecting of which will certainly leave him on the plane of mediocrity. The first problem in education, then, is to take the unripe and inefficient nervous system and so develop it in connection with the growing mind that the possibilities which nature has stored in it shall become actualities.
Undeveloped Cells.—Professor Donaldson tells us on this point that: "At birth, and for a long time after, many [nervous] systems contain cell elements which are more or less immature, not forming a functional part of the tissue, and yet under some conditions capable of further development.... For the cells which are continually appearing in the developing cortex no other source is known than the nuclei or granules found there in its earliest stages. These elements are metamorphosed neuroblasts—that is, elementary cells out of which the nervous matter is developed—which have shrunken to a volume less than that which they had at first, and which remain small until, in the subsequent process of enlargement necessary for their full development, they expand into well-marked cells. Elements intermediate between these granules and the fully developed cells are always found, even in mature brains, and therefore it is inferred that the latter are derived from the former. The appearances there also lead to the conclusion that many elements which might possibly develop in any given case are far beyond the number that actually does so.... The possible number of cells latent and functional in the central system is early fixed. At any age this number is accordingly represented by the granules as well as by the cells which have already undergone further development. During growth the proportion of developed cells increases, and sometimes, owing to the failure to recognize potential nerve cells in the granules, the impression is carried away that this increase implies the formation of new elements. As has been shown, such is not the case."1
Development of Nerve Fibers.—The nerve fibers, no less than the cells, must go through a process of development. It has already been shown that the fibers are the result of a branching of cells. At birth many of the cells have not yet thrown out branches, and hence the fibers are lacking; while many of those which are already grown out are not sufficiently developed to transmit impulses accurately. Thus it has been found that most children at birth are able to support the weight of the body for several seconds by clasping the fingers around a small rod, but it takes about a year for the child to become able to stand. It is evident that it requires more actual strength to cling to a rod than to stand; hence the conclusion is that the difference is in the earlier development of the nerve centers which have to do with clasping than of those concerned in standing. Likewise the child's first attempts to feed himself or do any one of the thousand little things about which he is so awkward, are partial failures not so much because he has not had practice as because his nervous machinery connected with those movements is not yet developed sufficiently to enable him to be accurate. His brain is in a condition which Flechsig calls "unripe." How, then, shall the undeveloped cells and system ripen? How shall the undeveloped cells and fibers grow to full maturity and efficiency?
2. DEVELOPMENT OF NERVOUS SYSTEM THROUGH USE
Importance of Stimulus and Response.—Like all other tissues of the body, the nerve cells and fibers are developed by judicious use. The sensory and association centers require the constant stimulus of nerve currents running in from the various end-organs, and the motor centers require the constant stimulus of currents running from them out to the muscles. In other words, the conditions upon which both motor and sensory development depend are: (1) A rich environment of sights and sounds and tastes and smells, and everything else which serves as proper stimulus to the sense organs, and to every form of intellectual and social interest; and (2) no less important, an opportunity for the freest and most complete forms of response and motor activity.

Fig. 15.—Schematic transverse section of the human brain showing the projection of the motor fibers, their crossing in the neighborhood of the medulla, and their termination in the different areas of localized function in the cortex. S, fissure of Sylvius; M, the medulla; VII, the roots of the facial nerves.
An illustration of the effects of the lack of sensory stimuli on the cortex is well shown in the case of Laura Bridgman, whose brain was studied by Professor Donaldson after her death. Laura Bridgman was born a normal child, and developed as other children do up to the age of nearly three years. At this time, through an attack of scarlet fever, she lost her hearing completely and also the sight of her left eye. Her right eye was so badly affected that she could see but little; and it, too, became entirely blind when she was eight. She lived in this condition until she was sixty years old, when she died. Professor Donaldson submitted the cortex of her brain to a most careful examination, also comparing the corresponding areas on the two hemispheres with each other. He found that as a whole the cortex was thinner than in the case of normal individuals. He found also that the cortical area connected with the left eye—namely, the right occipital region—was much thinner than that for the right eye, which had retained its sight longer than the other. He says: "It is interesting to notice that those parts of the cortex which, according to the current view, were associated with the defective sense organs were also particularly thin. The cause of this thinness was found to be due, at least in part, to the small size of the nerve cells there present. Not only were the large and medium-sized cells smaller, but the impression made on the observer was that they were also less numerous than in the normal cortex."
Effect of Sensory Stimuli.—No doubt if we could examine the brain of a person who has grown up in an environment rich in stimuli to the eye, where nature, earth, and sky have presented a changing panorama of color and form to attract the eye; where all the sounds of nature, from the chirp of the insect to the roar of the waves and the murmur of the breeze, and from the softest tones of the voice to the mightiest sweep of the great orchestra, have challenged the ear; where many and varied odors and perfumes have assailed the nostrils; where a great range of tastes have tempted the palate; where many varieties of touch and temperature sensations have been experienced—no doubt if we could examine such a brain we should find the sensory areas of the cortex excelling in thickness because its cells were well developed and full sized from the currents which had been pouring into them from the outside world. On the other hand, if we could examine a cortex which had lacked any one of these stimuli, we should find some area in it undeveloped because of this deficiency. Its owner therefore possesses but the fraction of a brain, and would in a corresponding degree find his mind incomplete.
Necessity for Motor Activity.—Likewise in the case of the motor areas. Pity the boy or girl who has been deprived of the opportunity to use every muscle to the fullest extent in the unrestricted plays and games of childhood. For where such activities are not wide in their scope, there some areas of the cortex will remain undeveloped, because unused, and the person will be handicapped later in his life from lack of skill in the activities depending on these centers. Halleck says in this connection: "If we could examine the developing motor region with a microscope of sufficient magnifying power, it is conceivable that we might learn wherein the modification due to exercise consists. We might also, under such conditions, be able to say, 'This is the motor region of a piano player; the modifications here correspond precisely to those necessary for controlling such movements of the hand.' Or, 'This is the motor tract of a blacksmith; this, of an engraver; and these must be the cells which govern the vocal organs of an orator.'" Whether or not the microscope will ever reveal such things to us, there is no doubt that the conditions suggested exist, and that back of every inefficient and awkward attempt at physical control lies a motor area with its cells undeveloped by use. No wonder that our processes of learning physical adjustment and control are slow, for they are a growth in the brain rather than a simple "learning how."
The training of the nervous system consists finally, then, in the development and coördination of the neurones of which it is composed. We have seen that the sensory cells are to be developed by the sensory stimuli pouring in upon them, and the motor cells by the motor impulses which they send out to the muscles. The sensory and the motor fibers likewise, being an outgrowth of their respective cells, find their development in carrying the impulses which result in sensation and movement. Thus it is seen that the neurone is, in its development as in its work, a unit.
Development of the Association Centers.—To this simpler type of sensory and motor development which we have been considering, we must add that which comes from the more complex mental processes, such as memory, thought, and imagination. For it is in connection with these that the association fibers are developed, and the brain areas so connected that they can work together as a unit. A simple illustration will enable us to see more clearly how the nervous mechanism acts to bring this about.
Suppose that I am walking along a country road deeply engaged in meditation, and that I come to a puddle of water in my pathway. I may turn aside and avoid the obstruction without my attention being called to it, and without interruption of my train of thought. The act has been automatic. In this case the nerve current has passed from the eye (S) over an afferent fiber to a sensory center (s) in the nervous system below the cortex; from there it has been forwarded to a motor center (m) in the same region, and on out over a motor fiber to the proper muscles (M), which are to execute the required act. The act having been completed, the sensory nerves connected with the muscles employed report the fact back that the work is done, thus completing the circuit. This event may be taken as an illustration of literally thousands of acts which we perform daily without the intervention of consciousness, and hence without involving the hemispheres.

Fig. 16.—Diagram illustrating the paths of association.
If, however, instead of avoiding the puddle unconsciously, I do so from consideration of the danger of wet feet and the disagreeableness of soiled shoes and the ridiculous appearance I shall make, then the current cannot take the short circuit, but must pass on up to the cortex. Here it awakens consciousness to take notice of the obstruction, and calls forth the images which aid in directing the necessary movements. This simple illustration may be greatly complicated, substituting for it one of the more complex problems which are continually presenting themselves to us for solution, or the associated trains of thought that are constantly occupying our minds. But the truth of the illustration still holds. Whether in the simple or the complex act, there is always a forward passing of the nerve current through the sensory and thought centers, and on out through the motor centers to the organs which are to be concerned in the motor response.
The Factors Involved in a Simple Action.—Thus it will be seen that in the simplest act which can be considered there are the following factors: (1) The stimulus which acts on the end-organ; (2) the ingoing current over an afferent nerve; (3) the sensory or interpreting cells; (4) the fibers connecting the sensory with a motor center; (5) the motor cells; (6) the efferent nerve to carry the direction for the movement outward to the muscle; (7) the motor response; and, finally, (8) the report back that the act has been performed. With this in mind it fairly bewilders one to think of the marvelous complexity of the work that is going on in our nervous mechanism every moment of our life, even without considering the higher thought processes at all. How, with these added, the resulting complexity all works out into beautiful harmony is indeed beyond comprehension.
3. EDUCATION AND THE TRAINING OF THE NERVOUS SYSTEM
Fortunately, many of the best opportunities for sensory and motor training do not depend on schools or courses of study. The world is full of stimuli to our senses and to our social natures; and our common lives are made up of the responses we make to these stimuli,—the movements, acts and deeds by which we fit ourselves into our world of environment. Undoubtedly the most rapid and vital progress we make in our development is accomplished in the years before we have reached the age to go to school. Yet it is the business of education to see that we do not lack any essential opportunity, to make sure that necessary lines of stimuli or of motor training have not been omitted from our development.
Education to Supply Opportunities for Stimulus and Response.—The great problem of education is, on the physical side, it would seem, then, to provide for ourselves and those we seek to educate as rich an environment of sensory and social stimuli as possible; one whose impressions will be full of suggestions to response in motor activity and the higher thought processes; and then to give opportunity for thought and for expression in acts and deeds in the largest possible number of lines. And added to this must be frequent and clear sensory and motor recall, a living over again of the sights and sounds and odors and the motor activities we have once experienced. There must also be the opportunity for the forming of worthy plans and ideals. For in this way the brain centers which were concerned in the original sensation or thought or movement are again brought into exercise, and their development continued. Through recall and imagination we are able not only greatly to multiply the effects of the immediate sensory and motor stimuli which come to us, but also to improve our power of thinking by getting a fund of material upon which the mind can draw.
Order of Development in the Nervous System.—Nature has set the order in which the powers of the nervous system shall develop. And we must follow this order if we would obtain the best results. Stated in technical terms, the order is from fundamental to accessory. This is to say that the nerve centers controlling the larger and more general movements of the body ripen first, and those governing the finer motor adjustments later. For example, the larger body muscles of the child which are concerned with sitting up come under control earlier than those connected with walking. The arm muscles develop control earlier than the finger muscles, and the head and neck muscles earlier than the eye muscles. So also the more general and less highly specialized powers of the mind ripen sooner than the more highly specialized. Perception and observation precede powers of critical judgment and association. Memory and imagination ripen earlier than reasoning and the logical ability.
This all means that our educational system must be planned to follow the order of nature. Children of the primary grades should not be required to write with fine pencils or pens which demand delicate finger adjustments, since the brain centers for these finer coördinations are not yet developed. Young children should not be set at work necessitating difficult eye control, such as stitching through perforated cardboard, reading fine print and the like, as their eyes are not yet ready for such tasks. The more difficult analytical problems of arithmetic and relations of grammar should not be required of pupils at a time when the association areas of the brain are not yet ready for this type of thinking. For such methods violate the law of nature, and the child is sure to suffer the penalty.
4. IMPORTANCE OF HEALTH AND VIGOR OF THE NERVOUS SYSTEM
Parallel with opportunities for proper stimuli and response the nervous system must possess good tonicity, or vigor. This depends in large degree on general health and nutrition, with freedom from overfatigue. No favorableness of environment nor excellence of training can result in an efficient brain if the nerve energy has run low from depleted health, want of proper nourishment, or exhaustion.
The Influence of Fatigue.—Histologists find that the nuclei of nerve cells are shrunk as much as fifty per cent by extreme fatigue. Reasonable fatigue followed by proper recuperation is not harmful, but even necessary if the best development is to be attained; but fatigue without proper nourishment and rest is fatal to all mental operations, and indeed finally to the nervous system itself, leaving it permanently in a condition of low tone, and incapable of rallying to strong effort. For rapid and complete recuperation the cells must have not only the best of nourishment but opportunity for rest as well.
Extreme and long-continued fatigue is hostile to the development and welfare of any nervous system, and especially to that of children. Not only does overfatigue hinder growth, but it also results in the formation of certain toxins, or poisons, in the organism, which are particularly harmful to nervous tissue. It is these fatigue toxins that account for many of the nervous and mental disorders which accompany breakdowns from overwork. On the whole, the evil effects from mental overstrain are more to be feared than from physical overstrain.
The Effects of Worry.—There is, perhaps, no greater foe to brain growth and efficiency than the nervous and worn-out condition which comes from loss of sleep or from worry. Experiments in the psychological laboratories have shown that nerve cells shrivel up and lose their vitality under loss of sleep. Let this go on for any considerable length of time, and the loss is irreparable; for the cells can never recuperate. This is especially true in the case of children or young people. Many school boys and girls, indeed many college students, are making slow progress in their studies not because they are mentally slow or inefficient, not even chiefly because they lose time that should be put on their lessons, but because they are incapacitating their brains for good service through late hours and the consequent loss of sleep. Add to this condition that of worry, which often accompanies it from the fact of failure in lessons, and a naturally good and well-organized nervous system is sure to fail. Worry, from whatever cause, should be avoided as one would avoid poison, if we would bring ourselves to the highest degree of efficiency. Not only does worry temporarily unfit the mind for its best work, but its evil results are permanent, since the mind is left with a poorly developed or undone nervous system through which to work, even after the cause for worry has been removed and the worry itself has ceased.