bannerbanner
Настройки чтения
Размер шрифта
Высота строк
Поля
На страницу:
2 из 4

Могут ли такие связи между связями существовать и в социальных науках? С философских позиций у нас могут возникать сомнения. Но связи между связями сейчас уже существуют в одной из частей социальных наук – в электоральных исследованиях.

Связи между связями в электоральных исследованиях

Представьте простую электоральную систему, где S мест собрания распределены по округам с M местами от каждого, согласно некоему правилу пропорционального представительства. Когда у каждого округа только одно место (M=1), пропорциональное представительство становится равным мажоритарной системе относительного большинства с одномандатными округами. Да, такая система – это лишь крайний случай пропорционального представительства, где значимость округов сведена к 1. Вспомните президентские выборы как крайний случай парламентских. Самоочевидное для физиков, такое рассуждение через крайние случаи встречает невероятное сопротивление политологов, тем самым ослабляя развитие дисциплины.

Сколько партий выиграют места, хотя бы одно место, в таком собрании из S мест, распределенных по избирательным округам с M местами в каждом? При отсутствии другой информации обоснованным будет предположение, что эта величина равна корню четвертой степени из произведения S на M [Taagepera, 2007, p. 116, 133–134].

N0 = (MS)1/4

Например, если собрание из 200 мест избирается по десятимандатным округам, то произведение будет равно 200×10=2000. Корень четвертой степени из этого числа равен 6,7. Поэтому, скорее всего, около семи партий получат места. Исходя из этого предположения, в свою очередь, мы можем логически оценить долю мест большей партии. Из этого следует так называемое эффективное число партий [Taagepera, 2007, p. 122–164].

У нас получилась последовательность взаимосвязанных уравнений. Как говорится, кошка милая, но ловит ли мышей? Симпатичная логическая модель, но соответствует ли она реальности? Да, эта модель невероятно хорошо соответствует средним данным по миру в целом. А такое среднее, в свою очередь, является эталоном для страновых исследований. Действительно, если в стране заметно меньше партий, чем следовало ожидать, то мы должны исследовать, какие специфические страновые факторы приобрели значение помимо стандартных требований к размеру ассамблей и избирательных округов.

Эффективное число партий

«Эффективное» число партий, которое я упомянул, полностью именуется эффективным числом Лааксо–Таагеперы. Мы с Маркку Лааксо разрабатывали его каждый отдельно, но затем опубликовали наши результаты совместно [Laakso, Taagepera, 1979]. Это число широко используется для характеристики числа партий, когда какие‐то из них большие, а какие‐то маленькие. Это число уменьшает значимость малых партий, приписывая веса долям мест, полученным партиями, пропорционально этим самым долям:

N = 1 / Σsi 2,

где si – доля мест партии i. Предположим, что восемь партий получили места, но в очень неравном количестве: 30–30–30–2–2–2–2–2. Три партии имеют по 30% каждая и пять партий – только по 2%. Тогда любое разумное эффективное число должно быть как минимум 3 и как максимум 8. Число Лааксо – Таагеперы будет равно 3,68.

Это эффективное число применяется и за пределами партий. Я измерял пространство исторических империй и вычислял эффективное число политий по всему миру за более чем пять тысяч лет [Taagepera, 1997]. В результате была получена кривая или, точнее, паттерн экспоненциального уменьшения. Если продолжать этот паттерн, то как скоро можно ожидать появления единого мирового государства? Увы, придется ждать еще две тысячи лет.

Закон обратного квадрата продолжительности работы правительства

Теперь рассмотрим среднюю продолжительность работы кабинета в длительной перспективе. Логические соображения, основанные на числе каналов коммуникации, подсказывают нам, что этот срок должен быть обратно пропорционален отнюдь не числу партий, а квадрату этого числа [Taagepera 2007, p. 165–175]8, как показано на рисунке 1.


Рис. 1.

Среднее соотношение длительности существования кабинетов и эффективного числа партий: предсказательная модель, линия регрессии и разброс по фактору 2 модели [Taagepera, Sikk, 2007]


Это график рассеивания по двум параметрам – длительности существования правительства и эффективному числу партий. Для удобства и наглядности обе шкалы логарифмические. Тонкая центральная линия – это идеальная (best-fit) прямая, исчисленная по методу наименьших квадратов (МНК). Толстая центральная линия – это логически предсказанная прямая наклона -2 (для логарифмов). Обе прямые заметно близки друг к другу; это значит, что логическая модель соответствует реальности. Средняя продолжительность жизни кабинета равна 42 годам, разделенным на квадрат эффективного числа партий [Taagepera, Sikk, 2010].

C = 42 years / N2

Например, если есть две партии примерно равного размера, тогда наше лучшее предположение о средней продолжительности жизни правительства будет 42/4=10,5 года. Конечно, иные факторы, помимо числа партий, влияют на продолжительность существования правительств. Рисунок 1 показывает, что под их воздействием фактическая продолжительность может быть в два раза больше, чем ожидаемая, или в два раза меньше («различаться на фактор 2»). Для двух партий это означает, что продолжительность может достигать 21 года или быть всего 5,2 года. Однако при всех вариациях эффективное число партий по-прежнему обладает мощной объясняющей силой. Оно на целых 77% объясняет общую дисперсию продолжительности жизни правительства9.

Связи между связями в электоральных и партийных системах

Давайте вернемся к моему главному пункту: связям между связями. В это, может быть, трудно поверить, однако знание размеров ассамблей и количества мест в избирательных округах10 позволяет довольно точно определить продолжительность жизни правительства11. Возьмем для примера Португалию12. Логическая модель умеренно переоценивает число партий и умеренно недооценивает размер большей доли мест и продолжительность жизни правительства.

До этого я добрался десять лет назад в «Предсказаниях размера партий» [Taagepera, 2007]. На основании количества мест в собрании и округах можно предсказать, как места распределятся между партиями. Но что мы знаем о голосах? Этот вопрос по-прежнему не поддавался, однако теперь мы добрались и до него.

В книге «Голоса ради мест. Логические модели избирательных систем» [Shugart, Taagepera, 2017] предсказываются мировые средние распределения голосов, на национальном уровне и по округам – исключительно на основании числа мест в каждой отдельной ассамблее и округах. Разброс данных ощутим, но фактический паттерн мирового среднего невероятно близок к логической модели. Эти мировые средние обеспечивают исходные ориентиры для страновых исследований. Мы добавляем все новые связи и связываем их в постоянно расширяющийся спектр.

Наука шагает на двух ногах, а социальные науки пытаются скакать на одной

Если судить поверхностно, я преуспел в своей мечте усиления научности социальных исследований, раз получил премию Карла Дойча. Однако я должен признаться, что потерпел неудачу. По существу, мне не удалось превратить политологию в науку. Во всяком случае, политология, равно как и другие социальные науки, сегодня менее научна, чем полвека назад, когда Кохен и Дойч [Kochen, Deutsch, 1969] опубликовали свою модель децентрализации. Это произошло, поскольку бессмысленная обработка статистических данных вытеснила логическое моделирование, как, например, у тех же Кохена и Дойча. Политология от своей полной «не-научности» переходит все больше к «псевдонаучности».

Забудьте о бессмысленном противостоянии качественного и количественного подходов к изучению политики. Они оба незаменимы, и оба дополняют друг друга. Оба могут применяться хорошо или плохо. Моя озабоченность касается того неверного пути, по которому идут сегодня количественные подходы. Они создают сумбур в области политологии. Мало того что они так пышно процветают, так еще и некоторые журналы навязывают их, в том числе даже тем ученым, которые знают, как самостоятельно провести исследование намного лучше.

Приведу лишь один пример. Некоторое время назад мне попалось прекрасное исследование, расширяющее наше понимание политики и без использования большого количества цифр. По ходу чтения оно резко сошло на нет, подавленное приведением бесполезных статистических данных. Выведенная регрессия ничего нового не добавляла. Напротив, она размыла первоначальный замысел – хорошо, что не убила окончательно. Контраст был настолько очевидным, что я связался с автором. Я высказал предположение, что журнал потребовал добавить регрессию в качестве условия для публикации. Автор на это ответил: «Да, Вы абсолютно правы». Не правда ли, звучит очень привычно? Коли люди, делающие разумную качественную работу, вынуждены добавлять бессмысленные статистические методы, то что‐то здесь не так.

Вот еще один пример. Выдающийся математический психолог Дункан Люче рассказывал мне, как он добивался публикации своей статьи [Folk, Luce, 1987]. Суть дела прекрасно выражала логарифмическая модель. Журнал настаивал на замене ее простой регрессионной моделью, что не имело логического смысла. В качестве компромисса авторам позволили оставить тот подход, который действительно имел смысл, но при условии добавления бессмысленной модели [Taagepera, 2008, p. 4]. Если людей, проводящих логически обоснованное количественное исследование, принуждают к добавлению бессмысленных линейных моделей, то что‐то здесь не так, что‐то не в порядке в этом королевстве.


Рис. 2.

Наука шагает на двух ногах: наблюдении и осмыслении [Taagepera, 2015]. Две ноги науки


Взгляните на рисунок 2. Здесь наука изображена на двух ногах. Именно наличие двух ног и позволяет ей шагать, приращивать знание. Как я уже говорил, шаг одной заключается в вопросе о положении дел. Этот шаг связан с наблюдением, измерением, наглядным отображением и статистическим описанием. Шаг другой ногой связан с выяснением логических оснований положения дел. И не только наблюдаемых, но возможных, а также и необходимых при последовательном использовании логических оснований.

Именно второй шаг ведет нас к построению логических моделей. И это придает дополнительный смысл первому. Пока мы фокусируем свой взгляд только на том, что перед глазами, мы действительно улавливаем, каково положение дел в конкретном случае. Вся полнота проблемы раскрывается целиком, только когда мы задаемся вопросом: «Каким положение дел должно быть?» Именно этот вопрос и связанный с ним шаг позволяют нам понять, что именно следует искать. Две ноги шагают дальше, когда мыслительные модели тестируются с помощью собранных данных, чаще всего статистически13.

Вы можете сказать, что это звучит слишком абстрактно. Чтобы понять, что стоит за данными словами, я проиллюстрирую их на примере открытого мною закона продолжительности жизни правительства14. Первым шагом было следующее наблюдение: в странах с большим числом партий недолговечные правительства. Вторым шагом стало размышление над данным наблюдением. Оно очевидно приводит нас к непосредственному предсказанию о направлении связи (directional prediction), т.е. улавливающему лишь направление или тренд зависимости: чем больше партий, тем продолжительность жизни правительств меньше. Измерения продолжительности жизни правительств и числа партий в значительной степени подтверждают данное предсказание.

Но простого предсказания направления недостаточно. Вспомните о Галилее. Любой тосканский крестьянин мог сказать Галилею, в каком направлении падают вещи [Taagepera, 2008, p. 24]. Они падают вниз! Что еще вам нужно знать? Но Галилей хотел понять логику этого падения: как быстро они падают и почему. Если мы хотим быть учеными, то мы должны задавать подобные вопросы и относительно продолжительности жизни правительств, и о любых других направленных связях. И еще, когда я адресую такие вопросы журнальным рецензентам, то они отвечают в духе тех самых тосканских крестьян. Они указывают на излишние черты, лежащие за пределами обозначенной связи рассматриваемого эффекта. Делая это, они препятствуют исследованию на первом же шаге, когда Галилей только начинал свое изучение гравитации. Такие «крестьяне» причиняют ощутимый вред социальным наукам.

Крайне важный шаг заключается в том, чтобы наглядно представить имеющиеся данные (to graph the data)15. Посмотрите на график и поразмышляйте над тем, какую информацию он дает. На графике с обычным масштабом (не таком, как на рисунке 1), связь между продолжительностью жизни кабинета и числом партий представляется в виде нисходящей кривой, но НЕ прямой линии. Так забудьте о рефлекторном использовании линейной регрессии!

Кривая наводит на мысль, что продолжительность жизни правительства может быть обратно пропорциональна числу партий. Однако дальнейшие размышления приводят нас к предсказанию, что это должен быть квадрат числа: C=k/N 2, где k – это еще неопределенная константа16. Представленное выражение не является линейным, как и большинство других взаимосвязей в науках. Но это нелинейность такого вида, когда можно логически предположить, что логарифмирование продолжительности жизни правительств и числа партий приведет к линейной взаимосвязи, с наклоном -2. Повторная визуализация, но теперь уже с использованием логарифмированных шкал, подтверждает это подозрение, что мы и можем видеть на рисунке 1.

Теперь и только теперь можно перейти к статистическим подходам, которые позволят протестировать предложенные логические модели. Чтобы это имело смысл, линейная регрессия должна применяться только к логарифмированным показателям продолжительности жизни правительств и числа партий – не к их количественным измерениям как таковым. Данная линейная регрессия подтверждает ожидаемый наклон, равный -2, а также позволяет найти наилучшее значение для константы – 42 года.

Итак, конечным результатом является получение количественной предсказательной логической модели: C=42 года/N 2. Эта модель «количественная и предсказательная», потому что она предсказывает не только направление изменений, но также и продолжительность жизни правительства при заданном числе партий. Модель «логическая», потому что использование в качестве делителя квадрата числа партий исходит из логических соображений.

Заметьте, что мы использовали чередующиеся шаги каждой ноги, на которых стоит наука. Мы начали с наблюдения, левой ноги, а затем обратили внимание на направленное мышление – правую ногу. Визуализация включается в «наблюдательную» ногу. Дальнейшие размышления приводят к обратной квадратной модели. Это заставило нас задаться вопросом: «Как мы можем превратить эту кривую в прямую линию?» Переход к логарифмам послужил ответом. Затем мы снова переключили наше внимание на «наблюдательную» ногу, перейдя к построению линейной регрессии на основе измененных данных. Наконец, мы должны были вновь сместить фокус нашего внимания на «мыслительную» ногу и спросить себя: «Имеет ли данный результат смысл?» Да, имеет. В частности, при большом числе партий продолжительность существования правительства будет приближаться к нулю, как это и должно быть.

Попытки скакать на одной ноге

Вообразим теперь, что за дело возьмется специалист в области статистики. Как только он установит направленность связи, все дальнейшие логические рассуждения покажутся ему излишними. Он попытается прыгать только лишь на «наблюдательной» ноге, как это показано на рисунке 3. Здесь он даже откажется от визуализации. Он загрузит сырые данные для построения регрессии, не обращая внимания на тот факт, что сама структура данных нелинейна. Без визуализации как он это узнает?17 Его компьютерная выдача покажет отрицательный знак для коэффициента наклона. Это подтвердит его предсказание о направлении связи, и это все, что такой специалист нацелен получить18.

Но постойте! Какой срок жизни правительства его регрессионная прямая отмерит в случае очень большого числа партий? Его нисходящая прямая предскажет отрицательную продолжительность жизни правительства, если число партий станет действительно большим. Это нелепо. Он не задается базовым вопросом: «Имеет ли данный результат смысл?»

Я вижу, как такие нелепые регрессии публикуются постоянно. Забывая о логическом мышлении, социальные исследователи слишком часто идут по легкому пути, подгоняя сырые данные к прямой линии или же к любому другому стандартному формату, базирующемуся на статистических или иных «модных» основаниях19. Дорогие коллеги, если мы как ученые хотим всерьез воспринимать нашу профессию – политическую науку, мы не должны публиковать такие нелепости. Нам не следует этого делать, чтобы действующие политики воспринимали нас всерьез.

Рак пожирает социальные науки. Готовые компьютерные программы дают возможность людям, не обладающим широким пониманием математики, «вымучить» кучу бессмысленных регрессионных анализов и подобных вещей, чтобы претендовать на научность. Сама же идея логических моделей опровергается в том случае, если регрессионный выход (output) будет назван «эмпирическими моделями».

Заметьте, это не просто нелепость «мусор загрузил, мусор выгрузил». Это куда хуже. Нередко мы загружаем ценные данные, а на выходе получаем тот же самый мусор. Почему? Потому что данные не были должным образом преобразованы (с использованием логического мышления), прежде чем они были загружены в компьютер.


Рис. 3.

Сегодня социальные науки пытаются скакать на одной ноге, «наблюдательной» [Taagepera, 2015]


Вместо того чтобы использовать статистику как инструмент, мы превращаем ее в подобие религиозной литургии. Слишком много рецензентов научных журналов выступают ревностными служителями такой религии. Они навязывают исполнение ее ритуалов даже тем исследователям, которые далеки от нее. Это одна из причин того, почему политология от своей полной «не-научности» переходит к «псевдонаучности»20.

Поймите правильно: статистические методы – это полезные инструменты, например, как долото (рисунок 4). Но горе тому человеку, который открыл для себя долото и, будучи в восторге от него, начал использовать его с целью что‐то тесать, прокалывать, пилить и даже копать в тех случаях, когда доступны другие инструменты. Вдвойне несчастно то общество, где такие священники, поклоняющиеся долоту, изо всех сил навязывают его как единственно возможный инструмент. Те, кто в наименьшей степени понимает статистику за пределами готовых компьютерных программ, чаще всего наиболее непоколебимо навязывают эти ритуалы.


Рис. 4.

Статистические методы – это полезные инструменты. Они как долото. Но горе тому обществу, где каждый принуждается использовать долото и для выпиливания, и для копания, или где количественные исследования упрощаются лишь до статистики


Выход из положения

Ситуация печальная, но не безнадежная. Работы, в которых есть баланс между мышлением и статистическими методами, существуют. Доказательством являются предыдущие обладатели премии Карла Дойча21 и многие другие исследователи, такие как Аренд Лейпхарт и Рональд Инглхарт. Жозеп Коломер [Colomer 2007] и Бернард Грофман указали на ограниченный набор методологий, которые могут быть использованы в социальных науках по сравнению с другими науками. Многие социальные исследователи точно определяют специфические недостатки неверно примененных и неверно интерпретированных статистических методов22. Однако этого недостаточно, чтобы исправить статистические методы. Мы должны также расширить разумное использование визуализации и задействовать «мыслительную» ногу. Джеймс МакГрегор [McGregor, 1993] и я [Taagepera, 2008, p. 14–22] показали, как и почему базовые законы естествознания ни за что не удалось бы открыть, используй мы только самые совершенные статистические методы. Не ожидайте большего и в социальных науках23.

Уважаемые коллеги, практикуйте качественные методы в политологии с небольшим использованием цифр, и да пребудет с вами мир. Если вы хотите использовать количественные методы, попробуйте практиковать подлинную количественную науку, которая пытается ходить на двух ногах. Но избегайте использования фальшивой количественной науки, которая скачет на одной ноге. Как это можно сделать без какой-либо подготовки и поддержки? Я написал две книги на эту тему. Они могут помочь.

Первой была «Сделаем социальные науки более научными: потребность в предсказательных моделях» [Taagepera, 2008]. В ней есть такие главы, как «Физики умножают, социальные исследователи складывают – даже когда что‐то не складывается» и «Почему большинство цифр, опубликованных в социальных науках, мертвы изначально».

Но моим студентам также не хватало и практического учебника по построению логических моделей. У студентов должна быть постоянная практика до того момента, пока они не приобретут определенных навыков в этой области, которые затем смогут использовать в жизни. Поэтому я написал книгу «Логические модели и базовая способность к количественному мышлению в социальных науках» [Taagepera, 2015], которая имеется в свободном доступе в Интернете. В этой книге мало математики за пределами арифметики. Построение логических моделей требует прежде всего смелости быть простым и критического ума, чтобы спросить: «Но может ли это быть так?»

Я использую эту книгу при работе как со студентами, так и с докторантами в Калифорнии и в Эстонии. Многие профессора в области социальных наук могут извлечь из нее выгоду. Работа «Голоса ради мест. Логические модели избирательных систем» [Shugart, Taagepera, 2017] систематически заимствует данный подход. Это та редкая действительно научная книга о политике, которая способна предложить методологический стандарт для всей социальной науки.

Поймите правильно: во многом история социальных наук – это история успеха. Они достигли значительного прогресса в качественном понимании общества. Статистические методы также очень нужны, но лишь до тех пор, пока их использование не становится злокачественным. Настало время дополнить статистическое описание логическими моделями, моделями, которые Карл Дойч включил в свой инструментарий.

Хочу закончить тем же, с чего начал. Примерно с 1970 г. я отдаю свое время и силы на реализацию двух невыполнимых задач. Одна из них – ликвидация господства Москвы над моей родной Эстонией [Misiunas, Taagepera, 1983; Taagepera, 1984]. Второй своей жизненной задачей я сделал превращение политических исследований в науку. Первая осуществилась. Моя мечта сбылась – Эстония сегодня свободна [Taagepera, 1993 a, 1993 b]. Усилия же придать научный характер политическим исследованиям – непомерный сизифов труд, и пока он не принес плодов. Но я все же продолжаю свои усилия. Премия Карла Дойча поддерживает меня в моих надеждах.

В примечаниях использован текст, опубликованный в журнале «International political science review».

Список литературы

Achen C.H. Let’s put garbage-can regressions and garbage-can probits where they belong // Conflict management and peace science. – University Park, PA, 2005. – Vol. 22, N 4. – P. 327–339.

Colomer J. What other sciences look like // European political science. – L., 2007. – Vol. 6. – P. 134–142.

Deutsch K.W. The nerves of government. – N.Y.: Free Press, 1964. – 316 p.

Deutsch K.W. Nationalism and its alternatives. – N.Y.: Alfred A. Knopf, 1969. – 200 p.

Folk M.D., Luce R.D. Effects of stimulus complexity on mental rotation rate of polygons // Journal of experimental psychology. – Washington, DC, 1987. – Vol. 87. – P. 395–404.

Gigerenzer G. Mindless statistics // Journal of socio-economics. – Greenwich, Conn., 2004. – Vol. 33. – P. 587–606.

Gigerenzer G., Kraus S., Vitouch O. The null ritual: What you always wanted to know about significance testing but were afraid to ask // The SAGE handbook of quantitative methodology for the social sciences / D. Kaplan (ed.). –Thousand Oaks, CA: SAGE Publications, 2004. – P. 391–408.

Gill J. The insignificance of null hypothesis significance testing // Political research quarterly. – Salt Lake City, 1999. – Vol. 52, N 3. – P. 647–674.

На страницу:
2 из 4