Полная версия
Апология математики (сборник статей)
Каждая из двух трактовок – и строгая, и расширительная – намечает своё направление преодоления барьера. Иными словами, выбор трактовки определяет, с какой стороны происходит или должно происходить преодоление: математическое влияет на гуманитарное, его математизируя, или же, напротив, гуманитарное влияет на математическое, его гуманизируя.
Математик в широком смысле этого слова вряд ли поможет широко понимаемому гуманитарию, но вот как профессионал профессионалу может помочь. Только не следует понимать это в вульгарном смысле: мол, математик – это ментор, который с высоты своего величия подаёт гуманитарию непрошеные советы. Говоря здесь о математике, мы скорее имеем в виду абстрактную персонификацию математического. Математическое же может проявляться в разных формах, в том числе и в виде реального лица, в пессимальном случае действительно, увы, ментора, а в случае оптимальном – доброжелательного критика, обращающего внимание гуманитарного исследователя на неясности, нелогичности или неточности. Наилучший результат математического влияния, к коему надлежит стремиться, состоит в усвоении гуманитарием дисциплины мышления, о которой шла речь в настоящем очерке, в пестовании им некоего «внутреннего математика», математического начала в своём мозгу. (Теоретически дисциплина мышления должна вырабатываться на уроках математики в школе, практически же этого не происходит, поскольку математика редко когда преподаётся интересно, да и вообще преподаётся не та математика, которой следовало бы обучать школьников.)
Гуманитарий же, напротив, вряд ли поможет математику в его профессиональной деятельности, но способен прямо или косвенно приобщить его к общепринятым нормам выстраивания и интерпретации синтаксических конструкций. Например, тем, которые требуют учитывать контекст («предлагаемые обстоятельства», как сказал бы Станиславский) и предписывают купить не десять батонов, а десять яиц. А также к нормам словоупотребления: например, употребления слова «неподалёку».
Возможно, слово «норма», даже с эпитетом «общепринятая», здесь слишком узко. Потому что, скажем, рекомендации по составлению инструкций вряд ли поддаются жесткой регламентации, предполагаемой термином «норма». Ведь одна из главных рекомендаций состоит в том, что текст инструкции должен быть лёгок для понимания, а именно этой лёгкости была лишена электоральная инструкция, о которой мы говорили выше. Безупречная с точки зрения синтаксиса и семантики, а потому полностью устраивающая математиков (в широком смысле слова), она оказалась, как выявила практика, трудна для понимания гуманитариями (опять-таки в широком смысле слова), а значит, неудачна. Лингвист сказал бы, что текст инструкции неудовлетворителен с точки зрения прагматики.
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.
Сноски
1
Сведения о предыдущих публикациях приведены в конце настоящего издания.
2
Прошу читателя иметь в виду, что этот текст впервые был опубликован в 1967 г. К этому периоду и следует относить слово «современный».
3
Множество – принятый в математике синоним слова «совокупность».
4
На первый взгляд кажется непостижимым, что у такого «наглядного понятия», как совокупность, могут быть разные математические модели; но ведь в прошлом веке, да и сейчас ещё, многим было столь же непонятно, что возможны различные математические модели «наглядного» представления о расположении прямых на плоскости.
5
Бурбаки Н. Теория множеств. М., 1965. С. 23.
6
Колмогоров А. Н. Простоту – сложному // Известия. 1962. 31 дек.
7
Колмогоров А. Н. Новгородское землевладение XV века. – М.: Физмат-лит, 1994.
8
Проблема четырёх красок заключается в требовании доказать следующий факт: любую мыслимую карту можно так раскрасить в четыре цвета, чтобы страны, имеющие общую границу, всегда были окрашены в разные цвета. Проблема ждала решения более ста лет.
9
Близнецами называются такие два простых числа, разность между которыми равна двум: например, 3 и 5, 5 и 7, 11 и 13, 17 и 19, 29 и 31. Неизвестно, конечным или бесконечным является количество близнецовых пар; в требовании дать ответ на этот вопрос и состоит проблема близнецов. (Напомним, что простым называется такое большее единицы целое число, которое делится без остатка только на само себя и на единицу.)
10
Было бы хорошо, если бы и некоторые гуманитарные тексты, в частности все тексты исторической науки, писались с такой же безоценочной бесстрастностью.
11
Talmy Leonard. Toward a Cognitive Semantics. Vol. 1. The MIT Press, 2000. P. 314. (http://linguistics.bufalo.edu/people/faculty/talmy/talmyweb/Volumel/chap5.pdf)
12
В оригинале: «The bike is near the house» и «The house is near the bike».
13
Математикам, впрочем, иногда нравится обыгрывать указанную омонимию в каламбурах: И до боли жаждет воли / Истомившийся от бега / По борелевскому полю / Измеримых по Лебегу. Те множества, которые являются измеримыми по Лебегу, действительно образуют борелевское поле, но бежать по нему, разумеется, невозможно.
14
Положение, принимаемое без доказательств (мат.). || Очевидная истина, утверждение, принимаемое на веру (книжн.) (Толковый словарь русского языка / Под ред. Д. Н. Ушакова. – М., 1935–1940.).
15
Крысин Л. П. Толковый словарь иноязычных слов. – 2-е изд., доп. – М., 2000.
16
Захаренко Е. Н., Комарова Л. Н., Нечаева И. В. Новый словарь иностранных слов. – М., 2003.
17
Задача для развлечения нематематика: продолжить последовательность чисел 1; 1; 2; 3; 5; 8; 13; 21; 34; 55; ….
18
Зализняк А. А. Лингвистика по А. Т. Фоменко // Успехи математических наук. 2000. Т. 55. Вып. 2. С. 162–188. И подробнее: Зализняк А. А. Из заметок о любительской лингвистике. – М., 2009. – 240 с.
19
Зализняк А. А. Похвала филологии. М., 2007. С. 79. А также: Зализняк А. А. Из заметок о любительской лингвистике. М., 2009. С. 210.