bannerbanner
Структура реальности. Наука параллельных вселенных
Структура реальности. Наука параллельных вселенных

Полная версия

Структура реальности. Наука параллельных вселенных

Настройки чтения
Размер шрифта
Высота строк
Поля
На страницу:
3 из 4

Нет никакой причины, по которой, пусть даже в принципе, должно существовать какое-либо более низкоуровневое объяснение появления этого атома меди в этом месте, чем то, которое я только что привел. По-видимому, редукционистская «теория всего» в принципе могла бы дать низкоуровневое предсказание вероятности, что такая статуя будет существовать, если известно состояние (скажем) Солнечной системы в какое-то более раннее время. Точно так же эта теория в принципе описала бы, как эта статуя могла туда попасть. Но такие описания и предсказания (конечно же, абсолютно нереальные) ничего бы не объясняли. Они просто описывали бы траекторию движения каждого атома меди от медного рудника через плавильную печь, мастерскую скульптора и т. д. Они также могли бы указать, какое влияние на эти траектории оказывают силы, действующие со стороны окружающих атомов, например, тех, из которых состоят тела шахтеров и скульптора, и предсказать таким образом существование и форму статуи. В действительности в такое предсказание пришлось бы включить атомы по всей планете, вовлеченные, кроме всего прочего, в сложное движение, которое мы называем Второй мировой войной. Но даже если бы вы обладали сверхчеловеческой способностью проследить такие пространные предсказания нахождения атома меди в том месте, вы все равно не смогли бы сказать: «Да, теперь я понимаю, почему он там находится». Вы просто знали бы, что его попадание туда таким образом неизбежно (или вероятно, или как угодно еще), если известны начальные конфигурации атомов и законы физики. Если бы вы захотели понять, почему он там находится, у вас по-прежнему не было бы другого выбора, кроме как сделать следующий шаг. Вам пришлось бы выяснить все, что касается этой конфигурации атомов и тех траекторий, которые способствуют попаданию атома меди именно в это место. Такое исследование стало бы творческой задачей, какой всегда является открытие новых объяснений. Вы бы обнаружили, что определенные конфигурации атомов обеспечивают такие эмерджентные явления, как лидерство и война, связанные друг с другом высокоуровневыми объяснительными теориями. И только узнав все эти теории, вы смогли бы полностью понять, почему этот атом меди находится именно там.

В редукционистском мировоззрении законы, управляющие взаимодействием субатомных частиц, имеют первостепенную значимость, поскольку они являются основой иерархии всего знания. Но в реальной структуре научного знания и в структуре нашего знания в целом такие законы играют гораздо более скромную роль.

Какова же эта роль? Мне кажется, что ни одна из рассматривавшихся до сих пор теорий-кандидатов на звание «теории всего» не содержит большой новизны в способе объяснения. Возможно, самый передовой подход с объяснительной точки зрения – это теория суперструн, в которой элементарными строительными блоками материи являются протяженные объекты, «струны», а не точечные частицы. Но ни один существующий подход не предлагает нового способа объяснения – нового в том смысле, в каком новым было объяснение Эйнштейном сил притяжения на основе искривленного пространства и времени. На самом деле ожидается, что «теория всего» унаследует практически всю объяснительную структуру существующих теорий электромагнетизма, ядерных сил и гравитации: их физические концепции, их язык, их математическое описание и форму их объяснений. Поэтому мы видим в этой базовой структуре, которая нам уже известна из существующих теорий, вклад фундаментальной физики в наше общее понимание.

В физике существует две теории, значительно более глубокие, чем остальные. Первая – это общая теория относительности, которая, как я уже говорил, является нашей лучшей теорией пространства, времени и гравитации. Вторая – еще более глубокая – это квантовая теория. Эти две теории (но никакая из существующих или ожидаемых теорий субатомных частиц) создают подробную объяснительную и формальную концептуальную основу, в рамках которой выражаются все остальные теории современной физики, и содержат основные физические принципы, которым подчиняются все прочие теории. Объединение общей теории относительности и квантовой теории – с целью получения квантовой теории гравитации – было на протяжении нескольких десятилетий основным предметом поисков физиков-теоретиков. Оно должно было стать частью любой теории всего, как в узком, так и в широком смысле этого термина. Как мы увидим в следующей главе, квантовая теория, как и теория относительности, дает революционно новый способ объяснения физической реальности. Причина, по которой квантовая теория глубже теории относительности, лежит большей частью не в физике, а вне ее, поскольку ее следствия простираются далеко за пределы физики и даже за пределы самой науки в привычном ее понимании. Квантовая теория является одной из четырех основных нитей, образующих наше современное понимание структуры реальности.

Прежде чем назвать три другие нити, я должен упомянуть еще один способ искажения редукционизмом структуры научного знания. Редукционизм предполагает не только то, что объяснение всегда состоит в разделении системы на меньшие и более простые системы, но и то, что все поздние события объясняются через более ранние; другими словами, единственный способ что-то объяснить – это указать причины. А это подразумевает, что, чем раньше произошли события, на основе которых мы что-то объясняем, тем лучше объяснение, так что в конечном счете все лучше объяснять на основе первоначального состояния Вселенной.

«Теория всего», исключающая характеристику первоначального состояния Вселенной, не является полным описанием физической реальности, потому что она дает только законы движения; а законы движения сами по себе порождают лишь условные предсказания. То есть они никогда не дают однозначных утверждений о том, что происходит, а лишь о том, что произойдет в заданный момент времени, если известно, что происходило раньше. Только если известна полная характеристика начального состояния, в принципе можно вывести полное описание физической реальности. Существующие космологические теории не дают полной характеристики начального состояния даже в принципе, но они утверждают, что изначально Вселенная была очень маленькой, очень горячей и очень однородной по своей структуре. Но мы также знаем, что Вселенная не могла иметь абсолютно однородную структуру, потому что это будет несовместимо (в соответствии с теорией) с тем распределением галактик, которые мы наблюдаем сегодня на небе. Первоначальные вариации плотности, или «комковатость» материи, должны были значительно усилиться под действием гравитации – относительно более плотные участки собирали больше материи и становились более плотными, так что сначала эти вариации могли быть очень слабыми. Но какими бы маленькими они ни были, они имеют огромное значение для любого редукционистского описания реальности, потому что почти все, что мы наблюдаем вокруг, – от распределения звезд и галактик в небе до появления бронзовых статуй на планете Земля – с точки зрения фундаментальной физики является следствием этих вариаций. Если наше редукционистское описание стремится охватить нечто большее, чем самые важные свойства наблюдаемой вселенной, нам нужна теория, которая описывает эти исключительно важные первоначальные отклонения от однородности.

Я попытаюсь заново сформулировать последнее требование без редукционистского уклона. Законы движения любой физической системы дают только условные предсказания и, следовательно, совместимы со многими возможными историями этой системы. (Этот вопрос не имеет отношения к ограничениям на предсказуемость, которые накладывает квантовая теория и о которых я расскажу в следующей главе). Например, законы движения, которым подчиняется ядро, выпущенное из пушки, совместимы со многими возможными траекториями, каждая из которых соответствует одному из возможных направлений и углов наклона ствола пушки при выстреле (рис. 1.2). Математически законы движения можно выразить системой уравнений, которые называют уравнениями движения. Существует много различных решений этих уравнений, каждое из которых описывает какую-то возможную траекторию. Чтобы определить, какое решение описывает фактическую траекторию, необходимо предоставить дополнительные данные – некоторую информацию о том, что происходит в действительности. Один из способов осуществить это заключается в описании начального состояния, в данном случае направления ствола пушки. Однако существуют и другие способы. Например, мы точно так же могли бы определить конечное состояние – положение и направление движения пушечного ядра в момент его приземления. Или мы могли бы определить положение самой высокой точки траектории. Неважно, какие именно дополнительные данные мы даем, если они позволяют выбрать одно конкретное решение системы уравнений движения. Объединение любых дополнительных данных такого рода с законами движения и дает теорию, которая описывает все, что происходит с пушечным ядром между моментами выстрела до падения.



Сходным образом законы движения для физической реальности в целом будут иметь много решений, каждое из которых соответствует конкретной истории. Для завершения описания нам придется указать, какой вариант истории произошел в действительности, предоставив достаточно дополнительных данных для выбора одного из многих решений уравнений движения. В простых космологических моделях одним из способов указать такие данные является определение начального состояния Вселенной. Но мы могли бы вместо этого определить конечное состояние или состояние в любой другой момент времени; или мы могли бы предоставить некоторую информацию о начальном состоянии, какую-то информацию о конечном состоянии и сообщить кое-что о промежуточных состояниях. В общем, объединив достаточное количество дополнительных данных разного рода с законами движения, мы получили бы, в принципе, описание физической реальности.

Для пушечного ядра, как только мы определим, скажем, его конечное состояние, мы сможем легко вычислить его начальное состояние, и наоборот, поэтому между различными методами указания дополнительных данных не существует практической разницы. Однако для Вселенной в целом большая часть таких вычислений очень трудна. Я уже говорил, что мы предполагаем существование «комковатости» материи в начальных состояниях на основании сегодняшних наблюдений неоднородности Вселенной. Но это исключение: большая часть нашего знания о дополнительных данных – о том, что именно происходит, – существует в форме высокоуровневых теорий эмерджентных явлений и, следовательно, по определению не поддается практическому выражению в виде утверждений о начальном состоянии. Например, в большей части решений уравнений движения Вселенная в своем начальном состоянии не обладает свойствами, необходимыми для появления жизни. Следовательно, наше знание того, что жизнь появилась, – это значительная часть дополнительных данных. Возможно, мы никогда не узнаем, что конкретно означает это ограничение для детальной структуры Большого взрыва, но мы можем делать выводы непосредственно из него. Например, первая точная оценка возраста Земли была сделана на основе биологической теории эволюции, и она противоречила лучшим физическим теориям того времени. Только редукционистское предубеждение могло заставить нас считать, что эти рассуждения были почему-то менее обоснованными или что в общем случае теоретизирование о начальном состоянии является более «фундаментальным», чем об эмерджентных чертах реальности.

Даже в области фундаментальной физики идея о том, что теории начального состояния содержат наши самые глубокие знания, является серьезным заблуждением. Одна из причин этого состоит в том, что она логически исключает возможность объяснения самого начального состояния: почему начальное состояние было таким, каким оно было, – однако в действительности у нас есть объяснения многих аспектов начального состояния. В еще более общей форме: никакая теория времени, по-видимому, не может объяснить это через то, что было «раньше»; тем не менее у нас есть глубокие объяснения природы времени, вытекающие из общей теории относительности и в еще большей мере из квантовой теории (см. главу 11).

Таким образом, характер многих наших описаний, предсказаний и объяснений реальности не имеет ничего общего с картиной «начальное состояние плюс законы движения», к которой приводит редукционизм. Не существует причины рассматривать теории высокого уровня как «граждан второго сорта». Наши теории субатомной физики и даже квантовая теория или теория относительности вовсе не являются привилегированными по отношению к теориям, описывающим эмерджентные свойства. Вероятно, ни одна из этих областей знания не сможет включить все остальные. Каждая из них содержит логические следствия для остальных, однако не все эти выводы можно сформулировать, поскольку они являются эмерджентными свойствами из области действия других теорий. В действительности неправильно употреблять сами термины «высокий уровень» и «низкий уровень». Законы биологии, например, являются высокоуровневыми эмерджентными следствиями законов физики. Но логически некоторые законы физики являются «эмерджентными» следствиями законов биологии. Могло быть даже и так, что законы, которым подчиняются биологические и другие эмерджентные явления, полностью определяли бы законы фундаментальной физики. В любом случае, когда две теории логически связаны между собой, логика не диктует нам, какую из них рассматривать как определяющую для второй в целом или частично. Это зависит от объяснительных отношений между теориями. Особое положение занимают не те теории, которые ссылаются на конкретную шкалу размеров или сложности, и не те, которые расположены на определенном уровне предсказательной иерархии, а те, которые содержат самые глубокие объяснения. Структура реальности состоит не только из редукционистских ингредиентов, таких как пространство, время и субатомные частицы, – но и из жизни, мысли, вычислений и многого другого, к чему относятся эти объяснения. Теория становится более фундаментальной и менее производной не из-за своей близости к якобы существующей предсказательной базе физики, а из-за своей близости к нашим самым глубоким объяснительным теориям.

Квантовая теория, как я уже говорил, является одной из таких теорий. Три другие основные нити объяснения, через которые мы стремимся понять структуру реальности, относятся к «высокому уровню» с точки зрения квантовой теории. Это теория эволюции (главным образом эволюции живых организмов), эпистемология (теория познания) и теория вычисления (о вычислительных машинах и о том, что они могут вычислить, а чего не могут). Как вы увидите, между основными принципами этих четырех, на первый взгляд, независимых предметов были обнаружены такие глубокие и разнообразные связи, что уже невозможно наилучшим образом понять один из них, не понимая три оставшихся. Все четыре формируют связную объяснительную структуру, которая имеет настолько обширную сферу применимости и охватывает столь значительную часть нашего понимания мира, что, на мой взгляд, ее уже можно справедливо назвать первой настоящей Теорией Всего. Таким образом, мы подошли к знаменательному моменту в истории идей – моменту, когда масштаб нашего понимания становится в полной мере универсальным. До настоящего времени все понимаемое нами касалось того или иного аспекта реальности, не характерного для целого. В будущем понимание охватит общую концепцию реальности: все объяснения будут пониматься на фоне универсальности, а каждая новая идея будет автоматически стремиться освещать не только конкретный предмет, но в различной степени все предметы. Углубление понимания, которое мы в конечном итоге получим от этого последнего великого объединения, может значительно превзойти то, что принесло любое из предыдущих объяснений. Мы увидим, что здесь объединяется и объясняется не только физика и не только наука, но и, в потенциале, весьма далекие области философии, логики и математики, этики, политики и эстетики – возможно, все, что мы понимаем в настоящее время, а может быть, и многое из того, что мы еще не понимаем.

Какой же тогда вывод я адресую себе-ребенку, который отвергал идею о том, что рост знания делает мир менее понятным? Я соглашусь с ним, хотя сейчас я считаю, что важно не то, может ли одна из особей нашего конкретного вида понять все то, что понимает весь вид. Важно то, действительно ли едина и понятна сама структура реальности. Есть веская причина считать, что это так. Будучи ребенком, я просто знал это: сейчас я могу это объяснить.

Терминология

Эпистемология – учение о природе знания и процессах, которые его создают.

Объяснение – (грубо) утверждение о природе и причинах вещей.

Инструментализм – система взглядов, в соответствии с которой целью научной теории является предсказание результатов экспериментов.

Позитивизм – крайняя форма инструментализма, строящаяся на тезисе, что все утверждения, за исключением тех, которые что-либо описывают или предсказывают, не имеют смысла. (Этот взгляд сам не имеет смысла по своим же критериям.)

Редуктивное объяснение – это объяснение, которое раскладывает все вещи на составляющие более низкого уровня.

Редукционизм – система взглядов, в соответствии с которой научные объяснения по природе своей являются редуктивными.

Холизм – идея о том, что обоснованными являются только объяснения, сделанные на основе систем более высокого уровня; противоположность редукционизма.

Эмерджентность – эмерджентным называется такое явление (например, жизнь, мысль или вычисление), относительно которого существуют понятные факты или объяснения, которое не выводится просто из низкоуровневой теорий низкого уровня, но которое можно объяснить или предсказать на базе высокоуровневой теории, относящейся непосредственно к этому явлению.

Резюме

Научное знание, как и все человеческое знание, состоит главным образом из объяснений. Факты можно посмотреть в справочнике, предсказания важны только при проведении решающих экспериментов для выбора между конкурирующими научными теориями, каждая из которых уже прошла проверку в качестве хорошего объяснения. По мере того, как новые теории вытесняют старые, наше знание становится как шире (когда появляются новые предметы), так и глубже (когда наши фундаментальные теории объясняют больше и становятся более обобщенными), причем глубина побеждает. Таким образом, мы не удаляемся от того состояния, когда один человек сможет понять все, что понято, а приближаемся к нему. Наши самые глубокие теории настолько переплетаются друг с другом, что их можно понять только совместно, как единую теорию объединенной структуры реальности. Эта Теория Всего имеет гораздо больший масштаб, чем та «теория всего», которую ищут специалисты в области физики элементарных частиц, потому что структура реальности состоит не только из таких редукционистских ингредиентов, как пространство, время и субатомные частицы, но также, например, из жизни, мысли и вычисления. Четыре основные нити объяснения, которые могут составить первую Теорию Всего, – это:


квантовая физика – см. главы 2, 9, 11–14;

эпистемология – см. главы 3, 4, 7, 10, 13, 14;

теория вычислений – см. главы 5, 6, 9, 10, 13, 14;

теория эволюции – см. главы 8, 13, 14.


Следующая глава посвящена первой и самой важной из четырех нитей – квантовой физике.

2. Тени

Рассмотрение физических явлений, происходящих при горении свечи, представляет собой самый широкий путь, которым можно подойти к изучению естествознания.

Майкл Фарадей. Курс из шести лекций по химической истории свечи[3]

В своих знаменитых научных лекциях в Королевском институте Майкл Фарадей всегда побуждал своих слушателей изучать мир, рассматривая, что происходит при горении свечи. Я заменю свечу электрическим фонариком. Это правомерно, поскольку устройство электрического фонарика во многом основано на открытиях Фарадея.

Я опишу несколько экспериментов, которые демонстрируют явления, лежащие в основе квантовой физики. Такого рода эксперименты со множеством вариантов и уточнений уже многие годы остаются основой существования квантовой оптики. Об их результатах не спорят, однако даже сейчас в некоторые из них трудно поверить. Базовые эксперименты удивительно просты. Они в сущности не требуют ни специализированных научных инструментов, ни больших познаний в математике или физике, потому что они заключаются всего лишь в отбрасывании теней. Обычный электрический фонарик может производить весьма странные картины света и тени. Если о них как следует подумать, обнаруживаются исключительной важности следствия. Чтобы объяснить их, нужны не просто новые физические законы, а новый уровень описания и объяснения, выходящий за пределы того, что раньше считали сферой науки. Прежде всего, эти картины открывают существование параллельных вселенных. Как это возможно? Какая мыслимая картина теней может повлечь за собой подобные выводы?



Представьте себе, что в темной комнате, где нет других источников света, включили электрический фонарик. Нить накала лампочки испускает свет, который расширяется, образуя конус. Чтобы не усложнять эксперимент отраженным светом, стены комнаты должны быть матово-черными, полностью поглощающими свет. Или, поскольку мы проводим эти эксперименты только в своем воображении, можно представить себе комнату астрономических размеров, чтобы свет не успевал достичь стен и вернуться до завершения эксперимента. Рис. 2.1 иллюстрирует данный опыт. Но этот рисунок кое в чем не соответствует действительности: если бы мы смотрели на фонарик со стороны, то не увидели бы ни его самого, ни испускаемого им света. Невидимость – одно из наиболее понятных свойств света. Мы видим свет лишь тогда, когда он попадает в наши глаза (хотя мы обычно говорим о том, что видим объект, находящийся на линии нашего зрения, который последним повлиял на этот свет).

Мы не можем увидеть свет, который просто проходит мимо. Если бы в луче оказался отражающий объект или даже пыль или капельки воды, чтобы рассеять свет, мы увидели бы, где он проходил. Но поскольку в луче ничего нет и мы смотрим на него извне, никакая часть его света нас не достигает. Точным представлением того, что мы должны увидеть, была бы абсолютно черная картинка. Если бы там был второй источник света, мы могли бы увидеть фонарик, но опять же не его свет. Лучи света, даже самого интенсивного света, который мы можем получить (с помощью лазеров), проходят друг сквозь друга, как если бы на их пути вовсе ничего не было.

На рис. 2.1 видно, что около фонарика свет наиболее яркий, а по мере удаления от него свет тускнеет, так как луч расширяется, чтобы осветить все бо́льшую площадь. Наблюдателю, находящемуся внутри луча и удаляющемуся от фонарика спиной вперед, рефлектор будет казаться все меньше, а затем, когда он станет выглядеть точкой – все слабее. Но нет ли тут подвоха? Действительно ли свет способен распространяться беспредельно все более и более тонкими лучами? Ответ: нет. На расстоянии примерно 10 000 км свет фонарика станет слишком слабым, чтобы человеческий глаз мог его различить, и наблюдатель ничего не увидит. То есть человек не увидит ничего; а животное с более чувствительным зрением? Глаз лягушки в несколько раз чувствительнее человеческого: этого как раз достаточно, чтобы эксперимент принес существенно иной результат. Если наблюдателем будет лягушка и она будет удаляться от электрического фонарика, момент, когда она полностью потеряет его из вида, никогда не наступит. Вместо этого лягушка увидит, что фонарик начал мигать. Вспышки будут видны через неравные промежутки времени, которые будут увеличиваться по мере удаления лягушки от фонарика. А вот яркость каждой отдельной вспышки не будет меньше. На расстоянии 100 млн км от фонарика лягушка будет видеть в среднем только одну вспышку света в день, но эта вспышка будет столь же яркой, как и наблюдаемая с любого другого расстояния.

К сожалению, лягушки не могут рассказать нам, что они видят. Поэтому при проведении реальных экспериментов мы используем фотоумножители (датчики света, чувствительность которых превышает чувствительность глаз лягушки), а вместо того, чтобы смотреть с расстояния в 100 млн км, ослабляем свет, пропуская его через темные фильтры. Однако принцип остается тем же самым, как и результат: не полная темнота и не однородный тусклый свет, а мигание, причем вспышки – одинаково яркие, независимо от того, насколько темный фильтр мы используем. Это мерцание показывает, что существует предел равномерного «растягивания» света. Пользуясь терминологией ювелиров, можно сказать, что свет не является бесконечно «ковким». Подобно золоту, небольшое количество света можно равномерно распределить по очень большой площади, но в конечном итоге, если попытаться растянуть его еще сильнее, он станет комковатым. Даже если можно как-нибудь предотвратить группирование атомов золота в отдельные комки, существует предел, за которым атомы уже нельзя разделить без того, чтобы золото не перестало быть золотом. Поэтому единственный способ сделать золотой лист толщиной в один атом еще тоньше – расположить атомы дальше друг от друга, чтобы между ними было пустое пространство. Но когда эти атомы окажутся достаточно далеко друг от друга, уже нельзя будет считать, что они образуют сплошной лист. Например, если каждый атом золота будет находиться в среднем на расстоянии нескольких сантиметров от своего ближайшего соседа, можно будет провести рукой через этот «лист», не прикасаясь к золоту вообще.

На страницу:
3 из 4