bannerbanner
The Chemical History of a Candle
The Chemical History of a Candle

Полная версия

The Chemical History of a Candle

Язык: Английский
Год издания: 2018
Добавлена:
Настройки чтения
Размер шрифта
Высота строк
Поля
На страницу:
2 из 3

I have a drawing here, sketched many years ago by Hooke, when he made his investigations. It is the drawing of the flame of a lamp, but it will apply to the flame of a candle. The cup of the candle is the vessel or lamp, the melted spermaceti is the oil, and the wick is common to both. Upon that he sets this little flame, and then he represents what is true—a certain quantity of matter rising about it which you do not see, and which, if you have not been here before, or are not familiar with the subject, you will not know of. He has here represented the parts of the surrounding atmosphere that are very essential to the flame, and that are always present with it. There is a current formed, which draws the flame out—for the flame which you see is really drawn out by the current, and drawn upward to a great height—just as Hooke has here shewn you by that prolongation of the current in the diagram. You may see this by taking a lighted candle, and putting it in the sun so as to get its shadow thrown on a piece of paper. How remarkable it is that that thing which is light enough to produce shadows of other objects, can be made to throw its own shadow on a piece of white paper or card, so that you can actually see streaming round the flame something which is not part of the flame, but is ascending and drawing the flame upwards. Now, I am going to imitate the sunlight, by applying the voltaic battery to the electric lamp. You now see our sun, and its great luminosity; and by placing a candle between it and the screen, we get the shadow of the flame.

You observe the shadow of the candle and of the wick; then there is a darkish part, as represented in the diagram, and then a part which is more distinct. Curiously enough, however, what we see in the shadow as the darkest part of the flame is, in reality, the brightest part; and here you see streaming upwards the ascending current of hot air, as shewn by Hooke, which draws out the flame, supplies it with air, and cools the sides of the cup of melted fuel.

I can give you here a little further illustration, for the purpose of shewing you how flame goes up or down; according to the current. I have here a flame—it is not a candle flame—but you can, no doubt, by this time, generalise enough to be able to compare one thing with another. What I am about to do is to change the ascending current that takes the flame upwards into a descending current. This I can easily do by the little apparatus you see before me. The flame, as I have said, is not a candle flame, but it is produced by alcohol, so that it shall not smoke too much. I will also colour the flame with another substance6, so that you may trace its course; for with the spirit alone you could hardly see well enough to have the opportunity of tracing its direction. By lighting this spirit-of-wine, we have then a flame produced; and you observe that when held in the air, it naturally goes upwards.

You understand now easily enough why flames go up under ordinary circumstances—it is because of the draught of air by which the combustion is formed. But now, by blowing the flame down, you see I am enabled to make it go downwards into this little chimney—the direction of the current being changed. Before we have concluded this course of lectures, we shall shew you a lamp in which the flame goes up and the smoke goes down, or the flame goes down and the smoke goes up. You see, then, that we have the power in this way of varying the flame in different directions.

There are now some other points that I must bring before you. Many of the flames you see here vary very much in their shape by the currents of air blowing around them in different directions; but we can, if we like, make flames so that they will look like fixtures, and we can photograph them—indeed, we have to photograph them—so that they become fixed to us, if we wish to find out everything concerning them. That, however, is not the only thing I wish to mention. If I take a flame sufficiently large, it does not keep that homogeneous, that uniform condition of shape, but it breaks out with a power of life which is quite wonderful. I am about to use another kind of fuel, but one which is truly and fairly a representative of the wax or tallow of a candle. I have here a large ball of cotton, which will serve as a wick. And, now that I have immersed it in spirit and applied a light to it, in what way does it differ from an ordinary candle? Why, it differs very much in one respect, that we have a vivacity and power about it, a beauty and a life entirely different from the light presented by a candle. You see those fine tongues of flame rising up. You have the same general disposition of the mass of the flame from below upwards; but, in addition to that, you have this remarkable breaking out into tongues which you do not perceive in the case of a candle. Now, why is this? I must explain it to you, because when you understand that perfectly, you will be able to follow me better in what I have to say hereafter. I suppose some here will have made for themselves the experiment I am going to shew you. Am I right in supposing that anybody here has played at snapdragon? I do not know a more beautiful illustration of the philosophy of flame, as to a certain part of its history, than the game of snapdragon. First, here is the dish; and let me say, that when you play snapdragon properly, you ought to have the dish well-warmed; you ought also to have warm plums and warm brandy, which, however, I have not got. When you have put the spirit into the dish, you have the cup and the fuel; and are not the raisins acting like the wicks? I now throw the plums into the dish, and light the spirit, and you see those beautiful tongues of flame that I refer to. You have the air creeping in over the edge of the dish forming these tongues. Why? Because, through the force of the current and the irregularity of the action of the flame, it cannot flow in one uniform stream. The air flows in so irregularly that you have what would otherwise be a single image, broken up into a variety of forms, and each of these little tongues has an independent existence of its own. Indeed, I might say, you have here a multitude of independent candles. You must not imagine, because you see these tongues all at once, that the flame is of this particular shape. A flame of that shape is never so at any one time. Never is a body of flame, like that which you just saw rising from the ball, of the shape it appears to you. It consists of a multitude of different shapes, succeeding each other so fast that the eye is only able to take cognisance of them all at once. In former times, I purposely analysed a flame of that general character, and the diagram shews you the different parts of which it is composed. They do not occur all at once: it is only because we see these shapes in such rapid succession, that they seem to us to exist all at one time.

It is too bad that we have not got further than my game of snapdragon; but we must not, under any circumstances, keep you beyond your time. It will be a lesson to me in future to hold you more strictly to the philosophy of the thing, than to take up your time so much with these illustrations.

LECTURE II

A CANDLE: BRIGHTNESS OF THE FLAME—AIR NECESSARY FOR COMBUSTION—PRODUCTION OF WATER

We were occupied the last time we met in considering the general character and arrangement as regards the fluid portion of a candle, and the way in which that fluid got into the place of combustion. You see, when we have a candle burning fairly in a regular, steady atmosphere, it will have a shape something like the one shewn in the diagram, and will look pretty uniform, although very curious in its character. And now, I have to ask your attention to the means by which we are enabled to ascertain what happens in any particular part of the flame—why it happens, what it does in happening, and where, after all, the whole candle goes to: because, as you know very well, a candle being brought before us and burned, disappears, if burned properly, without the least trace of dirt in the candlestick—and this is a very curious circumstance. In order, then, to examine this candle carefully, I have arranged certain apparatus, the use of which you will see as I go on. Here is a candle: I am about to put the end of this glass tube into the middle of the flame—into that part which old Hooke has represented in the diagram as being rather dark, and which you can see at any time, if you will look at a candle carefully, without blowing it about. We will examine this dark part first.

Now, I take this bent glass tube, and introduce one end into that part of the flame, and you see at once that something is coming from the flame, out at the other end of the tube; and if I put a flask there, and leave it for a little while, you will see that something from the middle part of the flame is gradually drawn out, and goes through the tube and into that flask, and there behaves very differently from what it does in the open air. It not only escapes from the end of the tube, but falls down to the bottom of the flask like a heavy substance, as indeed it is. We find that this is the wax of the candle made into a vaporous fluid—not a gas. (You must learn the difference between a gas and a vapour: a gas remains permanent, a vapour is something that will condense.) If you blow out a candle, you perceive a very nasty smell, resulting from the condensation of this vapour. That is very different from what you have outside the flame; and, in order to make that more clear to you, I am about to produce and set fire to a larger portion of this vapour—for what we have in the small way in a candle, to understand thoroughly, we must, as philosophers, produce in a larger way, if needful, that we may examine the different parts. And now Mr. Anderson will give me a source of heat, and I am about to shew you what that vapour is. Here is some wax in a glass flask, and I am going to make it hot, as the inside of that candle-flame is hot, and the matter about the wick is hot. [The Lecturer placed some wax in a glass flask, and heated it over a lamp.] Now, I dare say that is hot enough for me. You see that the wax I put in it has become fluid, and there is a little smoke coming from it. We shall very soon have the vapour rising up. I will make it still hotter, and now we get more of it, so that I can actually pour the vapour out of the flask into that basin, and set it on fire there. This, then, is exactly the same kind of vapour as we have in the middle of the candle; and that you may be sure this is the case, let us try whether we have not got here, in this flask, a real combustible vapour out of the middle of the candle. [Taking the flask into which the tube from the candle proceeded, and introducing a lighted taper.] See how it burns. Now, this is the vapour from the middle of the candle, produced by its own heat; and that is one of the first things you have to consider with respect to the progress of the wax in the course of its combustion, and as regards the changes it undergoes. I will arrange another tube carefully in the flame, and I should not wonder if we were able, by a little care, to get that vapour to pass through the tube to the other extremity, where we will light it, and obtain absolutely the flame of the candle at a place distant from it. Now, look at that. Is not that a very pretty experiment? Talk about laying on gas—why, we can actually lay on a candle! And you see from this that there are clearly two different kinds of action—one the production of the vapour, and the other the combustion of it—both of which take place in particular parts of the candle.

I shall get no vapour from that part which is already burnt. If I raise the tube (fig. 7) to the upper part of the flame, so soon as the vapour has been swept out, what comes away will be no longer combustible: It is already burned. How burned? Why, burned thus:—In the middle of the flame, where the wick is, there is this combustible vapour; on the outside of the flame is the air which we shall find necessary for the burning of the candle; between the two, intense chemical action takes place, whereby the air and the fuel act upon each other, and at the very same time that we obtain light the vapour inside is destroyed. If you examine where the heat of a candle is, you will find it very curiously arranged. Suppose I take this candle, and hold a piece of paper close upon the flame, where is the heat of that flame? Do you not see that it is not in the inside? It is in a ring, exactly in the place where I told you the chemical action was; and even in my irregular mode of making the experiment, if there is not too much disturbance, there will always be a ring. This is a good experiment for you to make at home. Take a strip of paper, have the air in the room quiet, and put the piece of paper right across the middle of the flame (I must not talk while I make the experiment), and you will find that it is burnt in two places, and that it is not burnt, or very little so, in the middle; and when you have tried the experiment once or twice, so as to make it nicely, you will be very interested to see where the heat is, and to find that it is where the air and the fuel come together.

This is most important for us as we proceed with our subject. Air is absolutely necessary for combustion; and, what is more, I must have you understand that fresh air is necessary, or else we should be imperfect in our reasoning and our experiments. Here is a jar of air. I place it over a candle, and it burns very nicely in it at first, shewing that what I have said about it is true; but there will soon be a change. See how the flame is drawing upwards, presently fading, and at last going out. And going out, why? Not because it wants air merely, for the jar is as full now as it was before; but it wants pure, fresh air. The jar is full of air, partly changed, partly not changed; but it does not contain sufficient of the fresh air which is necessary for the combustion of a candle. These are all points which we, as young chemists, have to gather up; and if we look a little more closely into this kind of action, we shall find certain steps of reasoning extremely interesting. For instance, here is the oil-lamp I shewed you—an excellent lamp for our experiments—the old Argand lamp. I now make it like a candle [obstructing the passage of air into the centre of the flame]; there is the cotton; there is the oil rising up it; and there is the conical flame. It burns poorly, because there is a partial restraint of air. I have allowed no air to get to it, save round the outside of the flame, and it does not burn well. I cannot admit more air from the outside, because the wick is large; but if, as Argand did so cleverly, I open a passage to the middle of the flame, and so let air come in there, you will see how much more beautifully it burns. If I shut the air off, look how it smokes; and why? We have now some very interesting points to study. We have the case of the combustion of a candle; we have the case of a candle being put out by the want of air; and we have now the case of imperfect combustion; and this is to us so interesting, that I want you to understand it as thoroughly as you do the case of a candle burning in its best possible manner. I will now make a great flame, because we need the largest possible illustrations. Here is a larger wick [burning turpentine on a ball of cotton]. All these things are the same as candles, after all. If we have larger wicks, we must have a larger supply of air, or we shall have less perfect combustion. Look now at this black substance going up into the atmosphere; there is a regular stream of it. I have provided means to carry off the imperfectly burned part, lest it should annoy you. Look at the soots that fly off from the flame: see what an imperfect combustion it is, because it cannot get enough air. What, then, is happening? Why, certain things which are necessary to the combustion of a candle are absent, and very bad results are accordingly produced; but we see what happens to a candle when it is burnt in a pure and proper state of air. At the time when I shewed you this charring by the ring of flame on the one side of the paper, I might have also shewn you, by turning to the other side, that the burning of a candle produces the same kind of soot—charcoal or carbon.

But, before I shew that, let me explain to you—as it is quite necessary for our purpose—that, though I take a candle and give you, as the general result, its combustion in the form of a flame, we must see whether combustion is always in this condition, or whether there are other conditions of flame; and we shall soon discover that there are, and that they are most important to us. I think, perhaps, the best illustration of such a point to us, as juveniles, is to shew the result of strong contrast. Here is a little gunpowder. You know that gunpowder burns with flame—we may fairly call it flame. It contains carbon and other materials, which altogether cause it to burn with a flame. And here is some pulverised iron, or iron filings. Now, I purpose burning these two things together. I have a little mortar in which I will mix them. (Before I go into these experiments, let me hope that none of you, by trying to repeat them, for fun's sake, will do any harm. These things may all be very properly used if you take care; but without that, much mischief will be done.) Well, then, here is a little gunpowder, which I put at the bottom of that little wooden vessel, and mix the iron filings up with it, my object being to make the gunpowder set fire to the filings and burn them in the air, and thereby shew the difference between substances burning with flame and not with flame. Here is the mixture; and when I set fire to it, you must watch the combustion, and you will see that it is of two kinds. You will see the gunpowder burning with a flame, and the filings thrown up. You will see them burning too, but without the production of flame. They will each burn separately. [The Lecturer then ignited the mixture.] There is the gunpowder, which burns with a flame; and there are the filings—they burn with a different kind of combustion. You see, then, these two great distinctions; and upon these differences depend all the utility and all the beauty of flame which we use for the purpose of giving out light. When we use oil, or gas, or candle, for the purpose of illumination, their fitness all depends upon these different kinds of combustion.

There are such curious conditions of flame, that it requires some cleverness and nicety of discrimination to distinguish the kinds of combustion one from another. For instance, here is a powder which is very combustible, consisting, as you see, of separate little particles. It is called lycopodium7, and each of these particles can produce a vapour, and produce its own flame; but, to see them burning, you would imagine it was all one flame. I will now set fire to a quantity, and you will see the effect. We saw a cloud of flame, apparently in one body; but that rushing noise [referring to the sound produced by the burning] was a proof that the combustion was not a continuous or regular one. This is the lightning of the pantomimes, and a very good imitation. [The experiment was twice repeated by blowing lycopodium from a glass tube through a spirit-flame.] This is not an example of combustion like that of the filings I have been speaking of, to which we must now return.

Suppose I take a candle, and examine that part of it which appears brightest to our eyes. Why, there I get these black particles, which already you have seen many times evolved from the flame, and which I am now about to evolve in a different way. I will take this candle and clear away the gutterage, which occurs by reason of the currents of air; and if I now arrange a glass tube so as just to dip into this luminous part, as in our first experiment, only higher, you see the result. In place of having the same white vapour that you had before, you will now have a black vapour. There it goes, as black as ink. It is certainly very different from the white vapour; and when we put a light to it, we shall find that it does not burn, but that it puts the light out. Well, these particles, as I said before, are just the smoke of the candle; and this brings to mind that old employment which Dean Swift recommended to servants for their amusement, namely, writing on the ceiling of a room with a candle. But what is that black substance? Why, it is the same carbon which exists in the candle. How comes it out of the candle? It evidently existed in the candle, or else we should not have had it here. And now I want you to follow me in this explanation. You would hardly think that all those substances which fly about London, in the form of soots and blacks, are the very beauty and life of the flame, and which are burned in it as those iron filings were burned here. Here is a piece of wire gauze, which will not let the flame go through it; and I think you will see, almost immediately, that when I bring it low enough to touch that part of the flame which is otherwise so bright, that it quells and quenches it at once, and allows a volume of smoke to rise up.

I want you now to follow me in this point,—that whenever a substance burns, as the iron filings burnt in the flame of gunpowder, without assuming the vaporous state (whether it becomes liquid or remains solid), it becomes exceedingly luminous. I have here taken three or four examples apart from the candle, on purpose to illustrate this point to you; because what I have to say is applicable to all substances, whether they burn or whether they do not burn,—that they are exceedingly bright if they retain their solid state, and that it is to this presence of solid particles in the candle-flame that it owes its brilliancy.

Here is a platinum-wire, a body which does not change by heat. If I heat it in this flame, see how exceedingly luminous it becomes. I will make the flame dim, for the purpose of giving a little light only, and yet you will see that the heat which it can give to that platinum-wire, though far less than the heat it has itself, is able to raise the platinum-wire to a far higher state of effulgence. This flame has carbon in it; but I will take one that has no carbon in it. There is a material, a kind of fuel—a vapour, or gas, whichever you like to call it—in that vessel, and it has no solid particles in it; so I take that because it is an example of flame itself burning without any solid matter whatever; and if I now put this solid substance in it, you see what an intense heat it has, and how brightly it causes the solid body to glow. This is the pipe through which we convey this particular gas, which we call hydrogen, and which you shall know all about next time we meet. And here is a substance called oxygen, by means of which this hydrogen can burn; and although we produce, by their mixture, far greater heat8 than you can obtain from the candle, yet there is very little light. If, however, I take a solid substance, and put that into it, we produce an intense light If I take a piece of lime, a substance which will not burn, and which will not vaporise by the heat (and because it does not vaporise, remains solid, and remains heated), you will soon observe what happens as to its glowing. I have here a most intense heat, produced by the burning of hydrogen in contact with the oxygen; but there is as yet very little light—not for want of heat, but for want of particles which can retain their solid state; but when I hold this piece of lime in the flame of the hydrogen as it burns in the oxygen, see how it glows! This is the glorious lime-light, which rivals the voltaic-light, and which is almost equal to sunlight. I have here a piece of carbon or charcoal, which will burn and give us light exactly in the same manner as if it were burnt as part of a candle. The heat that is in the flame of a candle decomposes the vapour of the wax, and sets free the carbon particles—they rise up heated and glowing as this now glows, and then enter into the air. But the particles when burnt never pass off from a candle in the form of carbon. They go off into the air as a perfectly invisible substance, about which we shall know hereafter.

Is it not beautiful to think that such a process is going on, and that such a dirty thing as charcoal can become so incandescent? You see it comes to this—that all bright flames contain these solid particles; all things that burn and produce solid particles, either during the time they are burning, as in the candle, or immediately after being burnt, as in the case of the gunpowder and iron-filings,—all these things give us this glorious and beautiful light.

На страницу:
2 из 3