bannerbanner
Активация системы каналов акупунктуры человека
Активация системы каналов акупунктуры человека

Полная версия

Активация системы каналов акупунктуры человека

Язык: Русский
Год издания: 2018
Добавлена:
Настройки чтения
Размер шрифта
Высота строк
Поля

Активация системы каналов акупунктуры человека

Марина Сергеевна Мыльникова


© Марина Сергеевна Мыльникова, 2018

ISBN 978-5-4493-8508-6

Создано в интеллектуальной издательской системе Ridero


Материализация живых и неживых систем

Что подразумевается под термином материализация? Математическая единица и материальная точка абстрактны. Без математики они отсутствовали как понятие, но без них теоретические труды не обошлись бы, не было математического обобщения, теоретической базы для практической индустрии. Из небытия извлеченные в информационный пласт эфемерные понятия явились краеугольными камнями множества практических вычислений.

Рис 1 —

Рассмотрим процесс Mn (кривая) и случай В этого процесса (точка В).

Обнаруживается, что правильно описать этот процесс невозможно, т.к. само описание не имеет конца, и вероятно только описание заданных, т.е. известных характеристик.

Получив две координаты, точка становится «квадратной», со сторонами х и у. Если добавить ось Z, задающую объем, точка становится кубом со сторонами х у z, если х = у = z и параллелепипедом, если х ≠ у ≠ z. При появлении дискретной вращательной характеристики точка будет стремиться к форме многогранника, а постоянная вращательная характеристика превратит ее в шар, т.е. точка примет изначально предполагаемую форму, «круглую».

Первоначальное описание двумя координатами можно рассмотреть в качестве случая материализации точек А и С, которых «не было» и которые «возникли» при необходимости описать точку В.

Относительно друг друга они равны нулю, относительно точки В имеют числовую характеристику. Запомним этот факт. В квантовой физике так «ведут себя» противоположные спины.

Назовем ∆АСД координатной сферой описываемой точки В; ∆АВС отражением координатной сферы.

Рассмотрим материализацию (здесь и далее термин материализация употребляем как банальный) на данном примере. ∆АВС ограничен вспомогательными перпендикулярами на оси координат и гипотенузой АС, которая служит границей между координатной сферой и ее отражением.

∆АДС имеет значение для системы координат х у с центром в точке Д и для процесса описания он сам является описанием «разреженной» точки В, в сущности, это материализованное квазипространство, то есть мы получаем пример возникновения и, далее, узаконивания, этого понятия, и, более того, прямого участия в движении твердого материального мира таких объектов, как материальная точка и математическая единица. Этот процесс автор и называет материализацией, а вышеописанное есть случай материализации.

Однако, и точка, и единица являются квазивеличинами, т.к. они находятся в квазипространстве.

Здесь уместно привести описание существования абсолютного параллелизма для напоминания о геометрии Римана.

«В одной точке Ро ориентацию локального ортогонального n-кода можно выбрать произвольно. Но для других точек она уже будет определяться однозначно условием, чтобы все соответственные оси локальных n-кодов были взаимно параллельными. Тогда параллельные векторы будут иметь одинаковые локальные компоненты. Таким образом, для параллельного переноса вектора А из точки Ро в безконечно (православная орфография приставки «без» здесь и далее) близкую точку Рвыполняется формула 1

,

или, т.к. компоненты линейного элемента dx = αhdх, υ υα

а обратные соотношения имеют вид

dx = hdx, α α δυ υ

то

Полагая, что

перепишем закон параллельного переноса в виде:

.

Здесь величины ∆ в известном смысле аналогичны символам Кристоффеля rστ в геометрии Римана, поскольку они являются коэффициентами в соотношении, выражающем закон параллельного переноса. Однако, именно в этих величинах проявляется противоположность двух структур. Величины Г в геометрии Римана симметричны по нижним индексам, но выраженный через них закон переноса . ν не интегрируется

Величины ∆, напротив, не симметричны, но выражаемый через них закон переноса . интегрируется

Величины ∆, как и образованные из них антисимметричные выражения

Λ = Δ— Δ στ στ  τσ υ υ υ

обладают тензорным характером.

Свертыванием этого тензора получается вектор

φ=Λ σ σά ά

играющий в физических приложениях теории роль электромагнитного потенциала.

Существование тензора обуславливает наличие инвариантов и их первых производных. C функцией Гамильтона запишем вариационный принцип для таких вариаций величин hυ, которые обращаются в нуль на пределах интегрирования. Тогда получаются 16 уравнений для 16 полевых переменных h.

Разработка и физическая интерпретация затруднялась по той причине, что для выбора соотношений между постоянными А, В и с априори не было известно никаких оснований, т.к. при выборе постоянных

В = -А,

С = 0,

получаются уравнения поля, в первом приближении согласующиеся с известными законами гравитационного и электромагнитного полей.

Вычисления, проведенные совместно с Г. Мюнцем, показали даже (отметим этот момент знаком»!»), что поле материальной точки без электрического заряда в развитой здесь теории в точности совпадает с полем, которое дает первоначальная общая теория относительности.

Прежде чем вернуться к рассмотрению процесса материализации единиц, скажем, что вектор, играющий в физических приложениях теории роль электромагнитного потенциала, вследствие антисимметричности относится к интегрируемым величинам, т.е. такое описание позволяет рассматривать электромагнитный потенциал не как волну, а как частицу.

В геометрии Римана тот же закон пространственного переноса ведет к рассмотрению аналогичных величин как симметричных и неинтегрируемых, т.е. волн.

Сделаем вывод, если можно так выразиться:

Перпендикулярная система отсчета позволяет реализовать перпендикулярные и (или) скрещивающиеся свойства исследуемой единицы, т.е.при В = -А, С = 0 в перпендикулярной системе отсчета В + С ≠ В, -А – С = -А-1.

Можно сделать и другие всевозможные выводы, простейший повторный анализ рис.1. проиллюстрирует это.

Вспомним, что, получив две координаты, точка стремится к квадрату, 3-к кубу, множество – шару. Если учесть, что все процессы происходят во времени, ко всему – и к точке, и к процессу, и к системе, и к описанию процесса, т.е. к производной – добавляется векторность, являющаяся по отношению к прочим характеристикам квазисвойствам, т.е. векторность в своем роде четвертый лишний.

Сама точка В материальна, принадлежит кривой МN, т.е. является случаем процесса МN, точка В является целым, это дифференциал из интегрированной системы МN.

При создании системы координат для описания точки В обнаруживается, что начало отчета не является материальной точкой, т.е. координаты ее нулевые и поэтому начало отсчета находится нигде, его нет.

Это нематериальная точка, однако, с учетом векторной временной характеристики, точка «нигде» становится лучом «нигде», факт появления луча в настоящем проявляет его отсутствие в прошлом, т.е. луч становится прямой «нигде», с увеличением числа пространственных характеристик прямая развертывается в плоскость, далее одновременно с точкой В прямая «нигде» развертывается в нуль – пространство.

Поскольку точка В симметрична точке О, а точка О становится центром симметрии и в равной степени принадлежит ∆АСД и ∆АСВ, то она имеет свойства множества точек ∆АСД и свойства множества точек ∆АСВ, т.е. координатной сферы и отражения координатной сферы.

Поскольку точка О имеет свойства точки Д и точка В в равной степени, а также свойство быть материальной точкой и не быть ею одновременно, любая нематериальная точка нуль-пространства при получении временной характеристики может стать материальной, т.к. задав точке О координаты β и α на осях х и у, мы практически уравниваем ее с точкой В, превратив ее в подобие. То есть, описав нечто фактически невероятное, мы задаем свойства этого «нечта» и, значит, начинаем его . создавать

Итак, мы рассмотрели поведение постоянных

В = -Д (относительно точки 0)

при этом Д = 0, расстояние ДА ≠ ДА, т.к. точка Д нет, а на самом деле ДА = ДА-Д, и, несмотря на то, что Д = 0, что ДєДА, фактически отрезок ДА одной точкой находится в нуль-пространстве, идет из него. Как ни странно, но отрицательные значения числовых координат осей у и х не находятся в нем, они так же находятся «по эту сторону», т.к. отличны от 0.

Это связано с фактом выявления «отсутствия в прошлом» при факте «появления в настоящем».

В реальном мире фактически любая отражающая поверхность (зеркало) содержит изображение нуль- пространства.

При рассмотрении пространственно-временного континуума специальной теории относительности, в котором каждое событие описывается четырьмя числами: х, у, z (пространственные координаты) и координатой t (значением времени), описание «соседнего события» с координатами х, у, z и t будет отличаться на ds = dx + dy + dz – cdt = dx + dy + dz – cdt, где с есть мнимая единица,. 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2

Оба этих события находятся в нашем мире, только временная координата, связанная с квадратом мнимой единицы, приводится из, скажем, перпендикулярного пространства.

Здесь уместно привести некоторые выражения:

• = -1

(-1) • (-1) = 1; т.е. мнимая единица на самом деле легко превращается в отрицательную единицу, которая достоверно может обратиться в целое положительное число, которое может служить как интегралом, так и дифференциалом, в отличие от, С, т.е. обладать свойством ассиметричности.

Тогда, образно говоря, все пространство постоянно находится в векторном движении во времени, т.е. осуществляется всеобщий параллельный перенос, характеризовавшийся законом

.

Логично приравнять

Далее, поскольку все пространственные координаты как принадлежащие через любую описываемую ими точку всем трем числовым осях х, у, z, присутствуют в квазипространстве только одной общей точкой отсчета, которая сама не имеет числовых характеристик, т.к. они = 0, мы достоверно получаем, что в квазипространстве все события находятся на своих местах так, как в «нашем» мире пространственные объекты.

Четвертое уравнение преобразования Лоренца показывает, что, в отличии от классической физики, где время абсолютно равномерно и постоянно, по Галилею: t = t, время относительно одного и того же события в разных системах отсчета может быть различным, т.е.: 1

если t – t = 0, то теперь 1

t – t ≠ 0. 1

Логично вернуться к утверждению, что постоянные величины проявляют свойства переменных, где ДА ≠ ДА.

Обнаруживается, что континуум пространство * время при условии t = t, по Галилею, неоднородно по свойствам пространства, т.е. m ≠ m (m, к примеру, масса одного пространственного объекта, и m есть масса другого) и ничуть не противоречиво, то следственно, при t ≠ t явление m = m, т.е. масса (значение энергии, Е) всех (любых пространственных объектов при уплотнении (колебаниях плотности времени) имеет полную однородность на всем поле времени. 1 1 1 1 1 n

Впрочем, это очевидно: все прошлое имеет абсолютно такую же вероятность воспроизведения относительно настоящего момента, являющегося квинтессенцией трех временных координат t, t, t (прошлое (α), настоящее (β), будущее (γ) и одной пространственной, υ (объем), то есть, при перемещении «из пространства во время» все пространство приобретает свойство точки; в эту пространственную координату входит все мироздание, находящееся в настоящем моменте, некоей координате бытия, перетекающей из времени во время по витку виток. Мы видим, что в понятие «мгновение» входит существование всего фридмана, и вся вечность предоставлена каждой точке пространства, и что происходит постоянное возобновление посредством перемен соотношения, «инь-ян». (Древнерусское значение слова «время» есть «нечто вращающееся»). 1

Конец ознакомительного фрагмента.

Текст предоставлен ООО «Литрес».

Прочитайте эту книгу целиком, купив полную легальную версию на Литрес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

Конец ознакомительного фрагмента
Купить и скачать всю книгу