Полная версия
Каноны эволюции
Каноны эволюции
Аскар Искендеров
Нурсерик Кудереев
Эти два тождественны друг другу.
И различаются лишь названием.
Если дать им одно имя, назову это Непостижимое.
И это – Непостижимое, и то – Непостижимое.
Лао-цзы© Аскар Искендеров, 2018
© Нурсерик Кудереев, 2018
ISBN 978-5-4493-4665-0
Создано в интеллектуальной издательской системе Ridero
Аристотель и ветродвигатели
В детстве мне очень нравилось заниматься моделированием и разными техническим штуковинами, мечтая, что стану изобретателем. Однажды, уже как опытный инженер и участник республиканского конкурса, я выиграл грант на разработку ветроустановки.
Важно сказать, что в поисках инженерных решений я всегда стараюсь опираться на теорию, поэтому с головой погружаюсь в научную часть технической задачи. Занимаясь любимым делом, я начал собирать информацию обо всём, что касается ветроэнергетики, на досуге упражняя ум «сложными науками». Также меня интересовали смежные отрасли и прикладная физика в целом. Как водится, в тупик заводили простые вопросы.
Ещё со школы мы знаем, что нагретый воздух уходит вверх и его место занимает холодный – возникает ветер. В реальной природе сильно разогретый воздух может стоять без движения месяцами, называется это антициклон. Когда он исчезнет или переместится, предсказать точно метеослужба не в состоянии. Причина мне была непонятна.
У всех изобретателей ветродвигателей (ветряков) есть одна забота – ожидание ветра, и есть одна беда – штормовой ветер. Допустим, первое —антициклон, а второе? Я был поражён, узнав, что сражаюсь, как Дон Кихот, с осколками климатических вихрей, достигающих в диаметре нескольких тысяч километров. Учёные называют их циклонами.
Занявшись изучением природы ветров и вникая шаг за шагом в климатологию, я выяснил странную вещь: наука никак не объясняет природу даже обычных степных вихрей. Они налетают внезапно, побуждаются внутренними силами, а что это за силы – ни у физики, ни у других «сложных» наук ответа нет.
Изменения климата ещё не вызывали у меня особой тревоги, я относился к ним, как все нормальные люди: считал длительными процессами, которые существуют сами по себе. Зато было любопытно: каким образом брутальный смерч, или торнадо, поднимает высоко в небо целый дом и аккуратно переносит его вместе с обитателями?
На первый взгляд, сила ветра должна только разрушать! Однако вихри могут, ловко манипулируя «невидимыми руками», уносить и возвращать обратно непомерные тяжести. Разгадывая этот фокус, я не нашёл однозначной и достоверной трактовки.
Физика высокий КПД природных вихрей объясняет силой вакуума, а вакуум – это пустота. Непонятно, как из пустоты появляется сила, у которой «коэффициент эффективности» выше единицы. Пытаясь достичь максимального КПД, я решил сконструировать необычную модель ветродвигателя и создать искусственный вихрь – задумал использовать подъёмную силу загадочного вакуума. (Вселенная является крупномасштабной флуктуацией энергии вакуума. Э. Трайон).
Достигнув заметного прогресса в проектировании, правда, лишь за счёт обычного эффекта кавитации, я упёрся в необходимость изучить различные виды сил и освоить понятие энергии. Работая с энергией ветра, я никак не мог уяснить её сущность. К тому же меня посетила догадка, что в периоде антициклона происходит накопление некой избыточной энергии, которая потом рассеивается в виде вихрей-циклонов. В дальнейшем это догадка оказалась решающей при создании теории климата.
Идея требовала проработки, и начать пришлось с самых истоков, с некой условной точки. Евклида или Аристотеля? Не суть.
Механика Ньютона называет отсутствие движения, а значит и энергии, состоянием инерционного покоя. Оглядываясь вокруг, я не видел ничего, что не двигалось бы. Пространство – единственное во Вселенной, что могло бы не двигаться, но физика уже сокрушила эту догму и непонятно почему.
Энергию я представлял в виде субстанции (меня так учили), отдельной от материи. Выглядело примерно так: встречаются материальная частица и античастица, уничтожают друг друга, исчезая, превращаются в лучистую энергию. В тоже время физика утверждает, что световой луч есть движение мельчайших частиц-фотонов, то есть он всё же материя, а это означало, что материя не исчезает, она лишь достигает предельной скорости.
Теплофизика – статистическая механика, носителями энергии (теплоты) она считает молекулы воздуха. Почему не фотоны, задавал я себе вопрос, которые в виде солнечной радиации доставляют на планету основной объём энергии? В поиске ответов на многие «почему» я убедился, что в фундаментальных областях знаний имеются большие рассогласования.
Традиционно считается, что физика – развитая наука, но углубившись в нее, я обнаружил нечто бесподобное! Каждый ее раздел строит теории на отдельных независимых постулатах, которые часто расходятся с постулатами других разделов и даже противоречат им. Для человека, привыкшего к техническим нормативом и теориям, это оказалось полной неожиданностью.
Учёные изобретают теории. Инженеры воплощают их в различные устройства. Изобретатели нередко придумывают что-то вопреки существующим теориям. Порой обычные технари создают настолько интересные вещи, что передовая наука вынуждена их догонять!
Меня можно квалифицировать и как инженера, и как изобретателя, на пути творческих изысканий это мой особый багаж и секретное оружие. И всё же я был сильно озадачен: что именно я недопонимаю? Или что-то не так в самой науке? Вовремя подоспела «скорая помощь».
Своим мнением о главных научных проблемах поделился яркий представитель «золотого века» советской физики И. М. Халатников. В телеинтервью он коротко и просто сказал, что «у мировой науки нет фундаментальной физики». Такая поддержка со стороны академика РАН и иностранного члена Лондонского королевского общества, физика-теоретика, одного из руководителей послевоенного атомного проекта, создателя Института теоретической физики в СССР вдохновила меня на глубокое изучение обозначенных им проблем. Я осмелел и стал целенаправленно осваивать современные научные теории.
Ветряки, ветер, вихри, природа, физика снова закрутились в голове и связались в один тугой клубок. Можно сказать иначе: стечение обстоятельств затянуло меня в «научную трясину», как в неньютоновскую жидкость. За это время, собирая по крупицам объективную информацию, я стал убеждённым экологистом, начал буквально кожей ощущать тяжёлые последствия климатических изменений.
По мере погружения в актуальную проблематику разных наук во мне проснулся дремавший ранее аналитик. Аристотель в своей «Метафизике» писал: «Ремесленник знает „что“, а наставник знает „почему“, поэтому наставников мы почитаем больше» В другом месте: «А наиболее достойны познания первоначала и причины, ибо через них и на их основе познается все остальное, а не они через, что им подчинено».
Все начиналось с неделимых частиц и самообразования, я начал все с нуля, все понятия фундаментальной физики подвергались проверке.
Мне повезло, в том, что я не был физиком, и я не находился под давлением старых понятий и терминов науки (или ее шаблонов).
Количество многолетних поисков превратилось в качество – новое миропонимание, или новую систему взглядов на мир.
И мою первую книгу.
Глава 1. Начала физики и основы теории эволюции
Фундаментальная физика: вопросы без ответа
Современные знания имеют немало белых пятен в виде недоказанных или незавершённых теорий. Происхождение мира и появление жизни на планете до сих пор являются актуальными загадками. Отсутствие непротиворечивой гипотезы о начале мира, на мой взгляд, это недоработка фундаментальной физики, задачей которой является определение движущих сил первых эволюционных процессов, законов взаимодействия этих сил, основных свойств материи-первоэлемента и других её характеристик.
В многочисленных теоретических построениях инициирующей силой учёные, как правило, рассматривают только силу гравитации. Главный недостаток подобного подхода: непонятно, что именно приводит в вихревое движение космическую пыль и лёгкие газы. Например, суть гипотезы о вихревом начале мира Канта-Лапласа заключается в следующем: космологический субстрат, состоящий из частиц, концентрируется и сжимается с помощью сил гравитации до состояния плазмы. Далее внешние силы, или космические случайности, должны «запалить», запустить процессы термоядерной реакции и «зажечь» Солнце.
В качестве общепринятой версии для широкой публики приведу краткую вырезку из Википедии. «Согласно гипотезе Канта-Лапласа на месте Солнечной системы ранее располагалась огромная газо-пылевая туманность (похожая на хорошо знакомый нам дым из печных труб – прим. автора). По мнению И. Канта, пылевая туманность состояла из твёрдых частиц, по предположению П. Лапласа, она была газовой. Туманность была раскалённой и вращалась. Под действием законов тяготения её материя постепенно уплотнялась, сплющивалась, образуя в центре ядро. Так образовалось первичное солнце. Дальнейшее охлаждение и уплотнение туманности привело к увеличению угловой скорости вращения, вследствие чего на экваторе произошло отделение наружной части туманности от основной массы в виде колец, вращающихся в экваториальной плоскости: их образовалось несколько. В качестве примера Лаплас приводил кольца Сатурна. Неравномерно охлаждаясь, кольца разрывались, и вследствие притяжения между частицами происходило образование планет, обращающихся вокруг Солнца. Остывающие планеты покрывались твёрдой коркой, на поверхности которой стали развиваться геологические процессы».
В данном варианте гипотезы я не нахожу ответа на вопросы: почему первичная газопылевая туманность вращалась? Почему она «уплотнялась под действием законов тяготения», ведь газы не могут сжаться до состояния плазмы с помощью очень слабых сил гравитации? Почему планеты начали вращаться вокруг своей оси? Наконец, я считаю, что произвольное самоохлаждение в космосе – это неправильная трактовка процесса, подход в принципе неверный. Данный вопрос напрямую относится к климату и будет подробно разбираться в соответствующей главе книги.
Также непонятно, как именно планеты сформировались по отдельности, как они отделились от протозвезды – большого вихря. Некоторые учёные предполагают, что спутники планет образовались при столкновении и разрушении самих планет. Лаплас, провозглашая идеи детерменизма, или непрерывную эволюцию, допускает пробелы в своей эволюционной гипотезе, включает в неё начальную полуготовность базового мира. Если он не находит рациональной объективной причины, объясняет какой-либо этап космической случайностью.
Физика в целом не учитывает базовую роль первичной материи в обустройстве мира. Космическая пыль – это мелкие частицы различных минералов, почему именно их принимают в виде субстрата, а не первичную материю?
В физике нет теории «самосборки» атомов. Кант, Лаплас и современные эволюционисты в своих гипотезах образования Солнечной системы в качестве субстрата эволюции принимают «сырьё» из готовых атомов. Они не учитывают, что в процессе эволюции Солнечной системы рождаются планеты, их спутники и химические элементы. Далее появляется биологическая жизнь, а затем и человек. И всё это начинается в галактическом космосе из первичной материи.
В виде субстрата первоначальной космической туманности физики приняли космическую пыль и газы, состоящие из химических элементов (атомов). Получается, что рассматривать эволюцию Солнечной системы они начинают с полпути, с некой промежуточной точки отсчёта. Остаётся нерешённым вопрос: кто и как подготовил космические «полуфабрикаты» для начала сотворения мира?
У Канта и Лапласа идеи о происхождении мира появились после открытий Галилея, Кеплера, Декарта и Ньютона. Галилей открыл инерцию предметов. Кеплер на основе данных Тихо Браге открыл орбитальные законы. Декарт увидел вихревую природу мира. Из всего этого Исаак Ньютон составил основы механики, в которую ввёл физические понятия: инерция, сила, ускорение, масса.
Что в данном направлении для науки сделал и что не смог прояснить Ньютон? Создавая механику планетарной системы, он включил в неё силы гравитации: они притягивают планету к Солнцу и непрерывно отклоняют инерционный порыв планеты к прямолинейному движению. Обозначились два свойства космических тел – это их инерция и силы гравитации. При этом в свою небесную механику он в «помощь» двум свойствам очень осторожно включил ещё и «божественные толчки».
Позднее Лаплас создал математическую модель Солнечной системы и доказал, что планеты по инерции долго, в пределе – вечно, могут поддерживать круговое (эллиптическое) движение. Он пришёл к выводу, что «божественные толчки» Ньютона вообще не нужны. Лаплас как бы окончательно снял, или решил, завуалированный основной вопрос физики и философии – извечный спор между материализмом и идеализмом. Однако «божественные толчки» Ньютона, его «ненаучные» идеи окончательно не прояснились до сих пор.
Промежуточный вывод. Пристальный взгляд на современные гипотезы эволюции мира рождает множество вопросов. Почему планеты отделились от большого вихря и от общей массы звёздного материала? Кто извне «запалил» термоядерную реакцию в прототеле звезды? Как затем тяжёлые химические элементы попали в тело планет? В главе «Образование Солнечной системы» мы попробуем ответить, создавая непротиворечивую гипотезу на основе новых начал физики и принятых далее в настоящей главе постулатов.
Для дальнейшей конкретизации своих вопросов и сомнений хочу обратиться к книге Ричарда Фейнмана «Характер физических законов». Фейнман – известный физик, лауреат Нобелевской премии, участник атомного проекта США. В своей книге он разъясняет очень сложные вопросы доступным языком, применяя простые примеры и находя нужные слова. В то же время Фейнман – типичный представитель современной физики, носитель её неоднозначных идей.
Он пишет: «Свободное движение не имеет никакой видимой причины. Почему предметы способны вечно лететь по прямой линии, мы не знаем. Происхождение закона инерции до сих пор остаётся загадкой» [60].
Подразумевается, что свободное движение предмета – это движение по инерции, в частности, Фейнман анализирует силы гравитации. Давайте и мы с вами займёмся «небесными силами», для чего рассмотрим вопрос в его графическом изображении. Рисунок 1 настоящей книги – это копия рисунка из книги Фейнмана. На нём мы видим движение планеты по орбите, видим вектор сил гравитации, направленный к центру, и вектор инерции планеты, направленный по касательной к траектории орбиты.
Фейнман поясняет данный рисунок так: «Поэтому, решил Ньютон, планете, вращающейся вокруг Солнца, не нужна сила, чтобы двигаться вперёд; если бы, не было никакой силы, планета летела бы по касательной» [60]. Пытаясь упростить изложение важных вопросов для широкой публики (или считая их уже решёнными), он искажает историю науки и умалчивает о том, что Ньютон дополнил инерционное движение планет «божественными толчками». Возможно, Фейнман полагал, что Ньютон ошибся, и скромно умолчал об этом.
На мой взгляд, Ньютон здесь осторожничает: он понимал, что если силы гравитации вызывают ускоренное отклонение планет в сторону Солнца, то рано или поздно планета должна упасть на Солнце, и вынужден был признать эпизодическое вмешательство извне. Нужны некие силы, которые должны выталкивать планеты и возвращать их на основную орбиту.
Как величайший физик Ньютон увидел неточность в планетарном равновесии сил, поэтому в своё понятие инерционного движения планет добавил «божественные толчки». Последователи позднее исказили его божественно-диалектические подходы в физике, пытаясь интерпретировать законы механики в свете материалистических идей.
Фейнман полностью поддерживает Лапласа и тоже считает, что внешние воздействия не нужны. Лаплас как математик проигнорировал это физическое «неладное» от Ньютона и полностью математизировал небесную механику. Можно сказать, спрятал нерешённый вопрос физики в дремучих лесах безликих математических формул. Позднее постарался и Джеймс Клерк Максвелл, предложив свою интегральную схему и «невидимые шестерёнки», поясняя электромагнитное поле.
Полностью разделяю мнение Эйнштейна, что все вместе они выдали лишь «случайные» математические алгоритмы. Завеса из формул скрыла физическую, или философскую, сущность явлений, которые они описывают. В результате теоретическая физика скорее потеряла, чем обрела, лишившись своей метафизической составляющей и раздражителя, двигавшей её на протяжении веков. Однако интуитивные догадки, как мне кажется, можно считать (тоже) одним из эффективных методов науки. Например, математические алгоритмы Максвелла прошли проверку практикой и востребованы в настоящее время, при этом его «невидимые шестерёнки» остаются для нас непонятными до сих пор.
Я полагаю, что искажения в приведённых мной примерах, как и многие другие, связаны с интерпретацией работ великих учёных прошлого и благими пожеланиями облегчить и упростить усвоение материала обучающимися. Новые поколения, оторванные от первоисточников и изучающие предлагаемые интерпретации, лишаются естественных научных раздражителей. Фейнман прячет «божественные толчки» Ньютона, другие интерпретаторы убрали из периодической таблицы «эфир» Менделеева. «Благими пожеланиями» устлан путь ошибок в науке. В наших дальнейших теоретических построениях самым активным образом будут участвовать и «божественные толчки» Ньютона, и первоэлемент Менделеева – «эфир».
В то же время Фейнман пишет: «Физика ещё не превратилась в единую конструкцию, где каждая часть – на своём месте. Пока мы имеем множество деталей, которые трудно подогнать друг к другу» [60]. В качестве примера в другом месте он отмечает: «До сих пор никому не удалось представить тяготение и электричество как два разных проявления одной и той же сущности» [60]. Мы примем во внимание его добросовестное признание о «недоделках» физики и постараемся в настоящей книге найти выходы из создавшегося положения.
Рассмотрим рисунок 1 более пристально. Он очень похож на параллелограмм равновесия сил. На рисунке мы видим динамическое равновесие. Однако о равновесии двух сил речь не идёт. Вектор инерционного движения планеты можно описать в виде произведения mv, а вектор сил притяжения – как ma, где m – масса тела, v – скорость, a – ускорение. Парадокс: мы составили параллелограмм равновесия между количеством движения mv и силой ma!
Я считаю это примером ненамеренного софизма в истории науки. Мы сравнили (сложили) площадь поверхности тела с его объёмом, составили из них динамическое равновесие планетарной системы и оказались перед дилеммой: чтобы выполнить условие равновесия и соблюсти правила механики, мы должны либо считать, что силы притяжения не являются силой, либо считать силой количество движения mv – инерцию.
Задачу в любом случае решать нужно, и мы это сделаем позже. Равновесие планетарной системы и законы небесной механики существуют на деле, это неоспоримый факт. Ошибка, вероятно, кроется в физических понятиях: скорее всего, инерция является не совсем инерцией. Мы опять видим нерешённые проблемы фундаментальной физики. Означает ли это, что механика Ньютона ошибочна? Если да, почему будущая плеяда знаменитых физиков пропустила ошибку?
Дело в том, что силы гравитации, возникающие между физическими телами, ведут себя как ma, у них есть квадратичная зависимость – обратная зависимость от расстояния между телами. Силы гравитации действуют на расстоянии, или бесконтактным способом.
Напротив, динамическая сила F=ma, принятая (придуманная) Ньютоном, не зависит от каких-либо условий и действует лишь при непосредственном контакте тел. Я немного уточню: динамические силы не зависят от расстояния между телами, потому что действуют при непосредственном контакте. Таким образом, мы приходим к предположению, что силы гравитации – это нечто другое по своей природе.
Но вернёмся к книге Фейнмана, где он пишет: «Эта удивительная проверка показала, что с теорией Ньютона всё в порядке» [60]. К данному заключению Фейнман приходит, описывая множество экспериментов, где определяется значение ускорения свободного падения g.
Подчеркну, что законы Ньютона действуют между физическими телами. Возникает вопрос: как это взаимодействие происходит в микромеханике, которая сегодня называется квантовой механикой? Оказывается, между ней и классической механикой возникают непримиримые противоречия. Учитывая объективные трудности в достоверном познании микромира (мира элементарных частиц), может быть, нам стоит проверить и уточнить механику Ньютона?
Когда я своими сомнениями делился с физиками, многие вскакивали с места и шли к доске, писали формулы, призывали не трогать Ньютона. Они утверждали, что законы Ньютона доказаны опытным путём. Как разрешились мои сомнения, я расскажу в главе «Образование Солнечной системы». Там попробуем вместе разобраться во всех перечисленных мной вопросах на великом космическом примере.
Теперь коснёмся малоразработанной темы образования вихрей. В чём заключаются логические пробелы гипотезы Лапласа и его детерминизма? Он не объясняет, какие силы в космосе или, может быть, имманентные свойства материи, подвигли космическое образование из частиц в круговое и вечное вихревое движение. Понятно, что силы гравитации могут концентрировать частицы, однако неясно, какие именно силы закрутили большой космический вихрь. Данное «недомыслие» в науке продолжается очень долго – уже сотни лет. Мы признаём различные физические законы и объясняем существующие явления, но не знаем, какие силы инициируют обычные природные вихри в атмосфере и в водной среде. В физике до сих пор нет теории обычных вихрей.
В общей системе как бы ниоткуда появился вращательный момент силы. Мы можем только догадываться: это каждая пылинка знает свой круговой маршрут или вихревое движение началось в результате гравитационного скопления частиц? Ясно только одно: учёные заметили, что иногда в атмосфере или в водной среде возникают вихревые эффекты. Отсюда по принципу аналогий делается общий вывод, что у космического скопления частиц появляется или есть изначально способность к вихревому движению. Как известно, аналогия – метод, не всегда имеющий большой доказательный вес, его нужно сочетать с общей композицией науки и постулатной базой.
Силы, инициирующие вихри, не могли появиться ниоткуда. И мы видим, что вопрос о физическом смысле образования вихрей в природе, о том, какие силы инициируют их, до сих пор остаётся без ответа. Да что тут говорить: для современной науки неясна природа энергии вообще! Понятие энергии в прямом и переносном смысле существует само по себе, оно остаётся за пределами освоенных нами знаний. К этому выводу я пришёл, можно сказать, случайно, изучая климат и пытаясь осмыслить, что такое тепло в атмосфере.
Обобщая всё вышесказанное, основными нерешёнными проблемами теоретической физики я бы назвал гипотезу построения атома, понятие материи, понятие энергии и теорию полей. Углубляясь в изучение всех этих проблем и вопросов, я сделал неожиданный вывод, что рационального решения и ответа на них до сих пор нет.
Начала фундаментальной физики по уровню миропонимания со времён Ньютона не продвинулись ни на йоту.
До этого физику, как и многие из вас, я считал для себя недосягаемой наукой, а самих физиков – небожителями. На деле это колосс на глиняных ногах, это смесь математики и фрагментарных фактов, физических понятий, не связанных общей теорией. У разных разделов физики есть самостоятельные постулатные базы, иногда они категорически противоречат друг другу. В фундаментальной части физики возникла величайшая путаница, и главная беда, что мы пока не отдаём себе отчёт в том, как сильно ошибаемся.
Думаю, что главная причина всех недоработок заключается в следующем: никто не устанавливает сроки для решения данных научных задач, не принимает целенаправленных и подкреплённых соответствующими ресурсами мер для прогресса фундаментальной физики. Прикладные науки с успехом развиваются, а основные фундаментальные вопросы десятками (сотнями) лет остаются без ответа и даже не стоят на повестке дня.
Экспериментальная физика по многим причинам здесь не помощник, это как раз тот случай, когда сначала нужна научная теория, чтобы затем на основе хотя бы косвенных экспериментов появилась возможность её доказать. Мы пока можем лишь фантазировать, прибегать к метафизике – когнитивному методу Аристотеля. В дополнение к метафизике я также воспользуюсь научным методом Зигмунда Фрейда.