bannerbanner
Eclectic Magazine of Foreign Literature, Science, and Art
Eclectic Magazine of Foreign Literature, Science, and Art

Полная версия

Eclectic Magazine of Foreign Literature, Science, and Art

Язык: Английский
Год издания: 2017
Добавлена:
Настройки чтения
Размер шрифта
Высота строк
Поля
На страницу:
1 из 7

Various

Eclectic Magazine of Foreign Literature, Science, and Art

MOUNTAIN OBSERVATORIES

On October 1st, 1876, one of the millionaires of the New World died at San Francisco. Although owning a no more euphonious name than James Lick, he had contrived to secure a future for it. He had founded and endowed the first great astronomical establishment planted on the heights, between the stars and the sea. How he came by his love of science we have no means of knowing. Born obscurely at Fredericksburg, in Pennsylvania, August 25th, 1796, he amassed some 30,000 dollars by commerce in South America, and in 1847 transferred them and himself to a village which had just exchanged its name of Yerba Buena for that of San Francisco, situate on a long, sandy strip of land between the Pacific and a great bay. In the hillocks and gullies of that wind-blown barrier he invested his dollars, and never did virgin soil yield a richer harvest. The gold-fever broke out in the spring of 1848. The unremembered cluster of wooden houses, with no trouble or tumult of population in their midst, nestling round a tranquil creek under a climate which, but for a touch of sea-fog, might rival that of the Garden of the Hesperides, became all at once a centre of attraction to the outcast and adventurous from every part of the world. Wealth poured in; trade sprang up; a population of six hundred increased to a quarter of a million; hotels, villas, public edifices, places of business spread, mile after mile, along the bay; building-ground rose to a fabulous price, and James Lick found himself one of the richest men in the United States.

Thus he got his money; we have now to see how he spent it. Already the munificent benefactor of the learned institutions of California, he in 1874 formally set aside a sum of two million dollars for various public purposes, philanthropic, patriotic, and scientific. Of these two millions 700,000 were appropriated to the erection of a telescope “superior to, and more powerful than any ever yet made.” But this, he felt instinctively, was not enough. Even in astronomy, although most likely unable to distinguish the Pole-star from the Dog-star, this “pioneer citizen” could read the signs of the times. It was no longer instruments that were wanted; it was the opportunity of employing them. Telescopes of vast power and exquisite perfection had ceased to be a rarity; but their use seemed all but hopelessly impeded by the very conditions of existence on the surface of the earth.

The air we breathe is in truth the worst enemy of the astronomer’s observations. It is their enemy in two ways. Part of the sight which brings its wonderful, evanescent messages across inconceivable depths of space, it stops; and what it does not stop, it shatters. And this even when it is most transparent and seemingly still; when mist-veils are withdrawn, and no clouds curtain the sky. Moreover, the evil grows with the power of the instrument. Atmospheric troubles are magnified neither more nor less than the objects viewed across them. Thus, Lord Rosse’s giant reflector possesses —nominally– a magnifying power of 6,000; that is to say, it can reduce the apparent distances of the heavenly bodies to 1/6000 their actual amount. The moon, for example, which is in reality separated from the earth’s surface by an interval of about 234,000 miles, is shown as if removed only thirty-nine miles. Unfortunately, however, in theory only. Professor Newcomb compares the sight obtained under such circumstances to a glimpse through several yards of running water, and doubts whether our satellite has ever been seen to such advantage as it would be if brought – substantially, not merely optically – within 500 miles of the unassisted eye.1

Must, then, all the growing triumphs of the optician’s skill be counteracted by this plague of moving air? Can nothing be done to get rid of, or render it less obnoxious? Or is this an ultimate barrier, set up by Nature herself, to stop the way of astronomical progress? Much depends upon the answer – more than can, in a few words, be easily made to appear; but there is fortunately reason to believe that it will, on the whole, prove favorable to human ingenuity, and the rapid advance of human knowledge on the noblest subject with which it is or ever can be conversant.

The one obvious way of meeting atmospheric impediments is to leave part of the impeding atmosphere behind; and this the rugged shell of our planet offers ample means of doing. Whether the advantages derived from increased altitudes will outweigh the practical difficulties attending such a system of observation when conducted on a great scale, has yet to be decided. The experiment, however, is now about to be tried simultaneously in several parts of the globe.

By far the most considerable of these experiments is that of the “Lick Observatory.” Its founder was from the first determined that the powers of his great telescope should, as little as possible, be fettered by the hostility of the elements. The choice of its local habitation was, accordingly, a matter of grave deliberation to him for some time previous to his death. Although close upon his eightieth year, he himself spent a night upon the summit of Mount St. Helena with a view to testing its astronomical capabilities, and a site already secured in the Sierra Nevada was abandoned on the ground of climatic disqualifications. Finally, one of the culminating peaks of the Coast Range, elevated 4,440 feet above the sea, was fixed upon. Situated about fifty miles south-east of San Francisco, Mount Hamilton lies far enough inland to escape the sea-fog, which only on the rarest occasions drifts upward to its triple crest. All through the summer the sky above it is limpid and cloudless; and though winter storms are frequent, their raging is not without highly available lucid intervals. As to the essential point – the quality of telescopic vision – the testimony of Mr. S. W. Burnham is in the highest degree encouraging. This well-known observer spent two months on the mountain in the autumn of 1879, and concluded, as the result of his experience during that time – with the full concurrence of Professor Newcomb – that, “it is the finest observing location in the United States.” Out of sixty nights he found forty-two as nearly perfect as nights can well be, seven of medium quality, and only eleven cloudy or foggy;2 his stay, nevertheless, embraced the first half of October, by no means considered to belong to the choice part of the season. Nor was his trip barren of discovery. A list of forty-two new double stars gave an earnest of what may be expected from systematic work in such an unrivalled situation. Most of these are objects which never rise high enough in the sky to be examined with any profit through the grosser atmosphere of the plains east of the Rocky Mountains; some are well-known stars, not before seen clearly enough for the discernment of their composite character; yet Mr. Burnham used the lesser of two telescopes – a 6-inch and an 18-inch achromatic – with which he had been accustomed to observe at Chicago.

The largest refracting telescope as yet actually completed has a light-gathering surface 27 inches in diameter. This is the great Vienna equatorial, admirably turned out by Mr. Grubb, of Dublin, in 1880, but still awaiting the commencement of its exploring career. It will, however, soon be surpassed by the Pulkowa telescope, ordered more than four years ago on behalf of the Russian Government from Alvan Clark and Sons, of Cambridgeport, Massachusetts. Still further will it be surpassed by the coming “Lick Refractor.” It is safe to predict that the optical championship of the world is, at least for the next few years, secured to this gigantic instrument, the completion of which may be looked for in the immediate future. It will have a clear aperture of three feet. A disc of flint-glass for the object-lens, 38·18 inches across, and 170 kilogrammes in weight, was cast at the establishment of M. Feil, in Paris, early in 1882. Four days were spent and eight tons of coal consumed in the casting of this vast mass of flawless crystal; it took a calendar month to cool, and cost 2,000l.3 It may be regarded as the highest triumph so far achieved in the art of optical glass-making.

A refracting telescope three feet in aperture collects rather more light than a speculum of four feet.4 In this quality, then, the Lick instrument will have – besides the Rosse leviathan, which, for many reasons, may be considered to be out of the running – but one rival. And over this rival – the 48-inch reflector of the Melbourne observatory – it will have all the advantages of agility and robustness (so to speak) which its system of construction affords; while the exquisite definition for which Alvan Clark is famous will, presumably, not be absent.

Already preparations are being made for its reception at Mount Hamilton. The scabrous summit of “Observatory Peak” has been smoothed down to a suitable equality of surface by the removal of 40,000 tons of hard trap rock. Preliminary operations for the erection of a dome, 75 feet in diameter, to serve as its shelter, are in progress. The water-supply has been provided for by the excavation of great cisterns. Buildings are rapidly being pushed forward from designs prepared by Professors Holden and Newcomb. Most of the subsidiary instruments have for some time been in their places, constituting in themselves an equipment of no mean order. With their aid Professor Holden and Mr. Burnham observed the transit of Mercury of November 7th, 1881, and Professor Todd obtained, December 6th, 1882, a series of 147 photographs (of which seventy-one were of the highest excellence) recording the progress of Venus across the face of the sun.

We are informed that a great hotel will eventually add the inducement of material well-being to those of astronomical interest and enchanting scenery. No more delightful summer resort can well be imagined. The road to the summit, of which the construction formed the subject of a species of treaty between Mr. Lick and the county of Santa Clara in 1875, traverses from San José a distance, as a bird flies, of less than thirteen miles, but doubled by the windings necessary in order to secure moderate gradients. So successfully has this been accomplished, that a horse drawing a light waggon can reach the observatory buildings without breaking his trot.5 As the ascending track draws its coils closer and closer round the mountain, the view becomes at every turn more varied and more extensive. On one side the tumultuous coast ranges, stooping gradually to the shore, magnificently clad with forests of pine and red cedar; the island-studded bay of San Francisco, and, farther south, a shining glimpse of the Pacific; on the other, the thronging pinnacles of the Sierras – granite needles, lava-topped bastions – fire-rent, water-worn; right underneath, the rich valleys of Santa Clara and San Joaquim, and, 175 miles away to the north (when the sapphire of the sky is purest), the snowy cone of Mount Shasta.

Thus, there seems some reason to apprehend that Mount Hamilton, with its monster telescope, may become one of the show places of the New World. Absit omen! Such a desecration would effectually mar one of the fairest prospects opened in our time before astronomy. The true votaries of Urania will then be driven to seek sanctuary in some less accessible and less inviting spot. Indeed, the present needs of science are by no means met by an elevation above the sea of four thousand and odd feet, even under the most translucent sky in the world. Already observing stations are recommended at four times that altitude, and the ambition of the new species of climbing astronomers seems unlikely to be satisfied until he can no longer find wherewith to fill his lungs (for even an astronomer must breathe), or whereon to plant his instruments.

This ambition is no casual caprice. It has grown out of the growing exigencies of celestial observation.

From the time that Lord Rosse’s great reflector was pointed to the sky in February, 1845, it began to be distinctly felt that instrumental power had outrun its opportunities. To the sounding of further depths of space it came to be understood that Atlantic mists and tremulous light formed an obstacle far more serious than any mere optical or mechanical difficulties. The late Mr. Lassell was the first to act on this new idea. Towards the close of 1852 he transported his beautiful 24-inch Newtonian to Malta, and, in 1859-60, constructed, for service there, one of four times its light capacity. Yet the chief results of several years’ continuous observation under rarely favorable conditions were, in his own words, “rather negative than positive.”6 He dispelled the “ghosts” of four Uranian moons which had, by glimpses, haunted the usually unerring vision of the elder Herschel, and showed that our acquaintance with the satellite families of Saturn, Uranus, and Neptune must, for the present at any rate, be regarded as complete; but the discoveries by which his name is chiefly remembered were made in the murky air of Lancashire.

The celebrated expedition to the Peak of Teneriffe, carried out in the summer of 1856 by the present Astronomer Royal for Scotland, was an experiment made with the express object of ascertaining “how much astronomical observation can be benefited by eliminating the lower third or fourth part of the atmosphere.”7 So striking were the advantages of which it seemed to hold out the promise, that we count with surprise the many years suffered to elapse before any adequate attempt was made to realize them.8 Professor Piazzi Smyth made his principal station at Guajara, 8,903 feet above the sea, close to the rim of the ancient crater from which the actual peak rises to a further height of more than 3,000 feet. There he found that his equatorial (five feet in focal length) showed stars fainter by four magnitudes than at Edinburgh. On the Calton Hill the companion of Alpha Lyræ (eleventh magnitude) could never, under any circumstances, be made out. At Guajara it was an easy object twenty-five degrees from the zenith; and stars of the fourteenth magnitude were discernible. Now, according to the usual estimate, a step downwards from one magnitude to another means a decrease of lustre in the proportion of two to five. A star of the fourteenth order of brightness sends us accordingly only 1/39th as much light as an average one of the tenth order. So that, in Professor Smyth’s judgment, the grasp of his instrument was virtually multiplied thirty-nine times by getting rid of the lowest quarter of the atmosphere.9 In other words (since light falls off in intensity as the square of the distance of its source increases), the range of vision was more than sextupled, further depths of space being penetrated to an extent probably to be measured by thousands of billions of miles!

This vast augmentation of telescopic compass was due as much to the increased tranquillity as to the increased transparency of the air. The stars hardly seemed to twinkle at all. Their rays, instead of being broken and scattered by continual changes of refractive power in the atmospheric layers through which their path lay, travelled with relatively little disturbance, and thus produced a far more vivid and concentrated impression upon the eye. Their images in the telescope, with a magnifying power of 150, showed no longer the “amorphous figures” seen at Edinburgh, but such minute, sharply-defined discs as gladden the eyes of an astronomer, and seem, in Professor Smyth’s phrase, to “provoke” (as the “cocked-hat” appearance surely baffles) “the application of a wire-micrometer” for the purposes of measurement.10

The lustre of the milky way and zodiacal light at this elevated station was indescribable, and Jupiter shone with extraordinary splendor. Nevertheless, not even the most fugitive glimpse of any of his satellites was to be had without optical aid.11 This was possibly attributable to the prevalent “dust-haze”, which must have caused a diffusion of light in the neighborhood of the planet more than sufficient to blot from sight such faint objects. The same cause completely neutralized the darkening of the sky usually attendant upon ascents into the more ethereal regions, and surrounded the sun with an intense glare of reflected light. For reasons presently to be explained, this circumstance alone would render the Peak of Teneriffe wholly unfit to be the site of a modern observatory.

Within the last thirty years a remarkable change, long in preparation,12 has conspicuously affected the methods and aims of astronomy; or, rather, beside the old astronomy – the astronomy of Laplace, of Bessel, of Airy, Adams, and Leverrier – has grown up a younger science, vigorous, inspiring, seductive, revolutionary, walking with hurried or halting footsteps along paths far removed from the staid courses of its predecessor. This new science concerns itself with the nature of the heavenly bodies; the elder regarded exclusively their movements. The aim of the one is description, of the other prediction. This younger science inquires what sun, moon, stars, and nebulæ are made of, what stores of heat they possess, what changes are in progress within their substance, what vicissitudes they have undergone or are likely to undergo. The elder has attained its object when the theory of celestial motions shows no discrepancy with fact – when the calculus can be brought to agree perfectly with the telescope – when the coursers of the heavens come strictly up to time, and their observed places square to a hair’s-breadth with their predicted places.

It is evident that very different modes of investigation must be employed to further such different objects; in fact, the invention of novel modes of investigation has had a prime share in bringing about the change in question. Geometrical astronomy, or the astronomy of position, seeks above all to measure with exactness, and is thus more fundamentally interested in the accurate division and accurate centering of circles than in the development of optical appliances. Descriptive astronomy, on the other hand, seeks as the first condition of its existence to see clearly and fully. It has no “method of least squares” for making the best of bad observations – no process for eliminating errors by their multiplication in opposite directions; it is wholly dependent for its data on the quantity and quality of the rays focussed by its telescopes, sifted by its spectroscopes, or printed in its photographic cameras. Therefore, the loss and disturbance suffered by those rays in traversing our atmosphere constitute an obstacle to progress far more serious now than when the exact determination of places was the primary and all-important task of an astronomical observer. This obstacle, which no ingenuity can avail to remove, may be reduced to less formidable dimensions. It may be diminished or partially evaded by anticipating the most detrimental part of the atmospheric transit – by carrying our instruments upwards into a finer air – by meeting the light upon the mountains.

The study of the sun’s composition, and of the nature of the stupendous processes by which his ample outflow of light and heat is kept up and diffused through surrounding space, has in our time separated, it might be said, into a science apart. Its pursuit is, at any rate, far too arduous to be conducted with less than a man’s whole energies; while the questions which it has addressed itself to answer are the fundamental problems of the new physical astronomy. There is, however, but one opinion as to the expediency of carrying on solar investigations at higher altitudes than have hitherto been more than temporarily available.

The spectroscope and the camera are now the chief engines of solar research. Mere telescopic observation, though always an indispensable adjunct, may be considered to have sunk into a secondary position. But the spectroscope and the camera, still more than the telescope, lie at the mercy of atmospheric vapors and undulations. The late Professor Henry Draper, of New York, an adept in the art of celestial photography, stated in 1877 that two years, during which he had photographed the moon at his observatory on the Hudson on every moonlit night, yielded only three when the air was still enough to give good results, nor even then without some unsteadiness; and Bond, of Cambridge (U. S.) informed him that he had watched in vain, through no less than seventeen years for a faultless condition of our troublesome environing medium.13 Tranquillity is the first requisite for a successful astronomical photograph. The hour generally chosen for employing the sun as his own limner is, for this reason, in the early morning, before the newly emerged beams have had time to set the air in commotion, and so blur the marvellous details of his surface-structure. By this means a better definition is secured but at the expense of transparency. Both are, at the sea-level, hardly ever combined. A certain amount of haziness is the price usually paid for exceptional stillness, so that it not unfrequently happens that astronomers see best in a fog, as on the night of November 15th, 1850, when the elder Bond discovered the “dusky ring” of Saturn, although at the time no star below the fourth magnitude could be made out with the naked eye. Now on well-chosen mountain stations, a union of these unhappy divorced conditions is at certain times to be met with, opportunities being thus afforded with tolerable certainty and no great rarity, which an astronomer on the plains might think himself fortunate in securing once or twice in a lifetime.

For spectroscopic observations at the edge of the sun, on the contrary, the sine quâ non is translucency. During the great “Indian eclipse” of August 18th, 1868, the variously colored lines were, by the aid of prismatic analysis, first described, which reveal the chemical constitution of the flamelike “prominences,” forming an ever-varying, but rarely absent, feature of the solar surroundings. Immediately afterwards, M. Janssen, at Guntoor, and Mr. Norman Lockyer, in England, independently realised a method of bringing them into view without the co-operation of the eclipsing moon. This was done by fanning out with a powerfully dispersive spectroscope the diffused radiance near the sun, until it became sufficiently attenuated to permit the delicate flame-lines to appear upon its rainbow-tinted background. This mischievous radiance – which it is the chief merit of a solar eclipse to abolish during some brief moments – is due to the action of the atmosphere, and chiefly of the watery vapors contained in it. Were our earth stripped of its “cloud of all-sustaining air,” and presented, like its satellite, bare to space, the sky would appear perfectly black up to the very rim of the sun’s disc – a state of things of all others (vital necessities apart) the most desirable to spectroscopists. The best approach to its attainment is made by mounting a few thousand feet above the earth’s surface. In the drier and purer air of the mountains, “glare” notably diminishes, and the tell-tale prominence-lines are thus more easily disengaged from the effacing lustre in which they hang, as it were suspended.

The Peak of Teneriffe, as we have seen, offers a marked exception to this rule, the impalpable dust diffused through the air giving, even at its summit, precisely the same kind of detailed reflection as aqueous vapors at lower levels. It is accordingly destitute of one of the chief qualifications for serving as a point of vantage to observers of the new type.

The changes in the spectra of chromosphere and prominences (for they are parts of a single appendage) present a subject of unsurpassed interest to the student of solar physics. There, if anywhere, will be found the key to the secret to the sun’s internal economy; in them, if at all, the real condition of matter in the unimaginable abysses of heat covered up by the relatively cool photosphere, whose radiations could, nevertheless, vivify 2,300,000,000 globes like ours, will reveal itself; revealing, at the same time, something more than we know of the nature of the so-called “elementary” substances, hitherto tortured, with little result, in terrestrial laboratories.

The chromosphere and prominences might be figuratively described as an ocean and clouds of tranquil incandescence, agitated and intermingled with waterspouts, tornadoes, and geysers of raging fire. Certain kinds of light are at all times emitted by them, showing that certain kinds of matter (as, for instance, hydrogen and “helium”14) form invariable constituents of their substance. Of these unfailing lines Professor Young counts eleven.15 But a vastly greater number appear only occasionally, and, it would seem, capriciously, under the stress of eruptive action from the interior. And precisely this it is which lends them such significance; for of what is going on there, they have doubtless much to tell, were their message only legible by us. It has not as yet proved so; but the characters in which it is written are being earnestly scrutinised and compared, with a view to their eventual decipherment. The prodigious advantages afforded by high altitudes for this kind of work were illustrated by the brilliant results of Professor Young’s observations in the Rocky Mountains during the summer of 1872. By the diligent labor of several years he had, at that time, constructed a list of one hundred and three distinct lines occasionally visible in the spectrum of the chromosphere. In seventy-two days, at Sherman (8,335 feet above the sea), it was extended to 273. Yet the weather was exceptionally cloudy, and the spot (a station on the Union Pacific Railway, in the Territory of Wyoming) not perhaps the best that might have been chosen for an “astronomical reconnaissance.”16

На страницу:
1 из 7