bannerbanner
Полный курс за 3 дня. Нормальная физиология
Полный курс за 3 дня. Нормальная физиология

Полная версия

Полный курс за 3 дня. Нормальная физиология

Настройки чтения
Размер шрифта
Высота строк
Поля
На страницу:
1 из 3

Полный курс за 3 дня

Нормальная физиология

Тема 1. Введение в нормальную физиологию

1. Основные этапы развития физиологии

Основоположником научной физиологии считается В. Гарвей. В 1628 г. вышла в свет книга «Анатомические исследования движения крови и сердца у живых». Автором было дано описание большого круга кровообращения. Эта дата и считается датой рождения научной физиологии.

В истории развития физиологии можно выделить два больших периода:

1) допавловский;

2) павловский.

Допавловский период продолжался до 1883 г., когда была издана диссертация И. П. Павлова «Центробежные нервы сердца».

Особенности допавловского периода развития физиологии

1. Функция изучалась на отдельных органах, не учитывалась целостность организма.

2. Не изучалось влияние нервной системы на функции организма в целом и отдельных его органов.

3. Не изучалось влияние факторов внешней среды на функциональное состояние организма человека.

4. Господствовал аналитический подход к изучению функций организма.

5. При экспериментах в физиологии применялись только наблюдения и острый опыт.

Особенности павловского периода развития физиологии

1. В физиологии господствует метод хронического эксперимента для изучения функций организма, но острый опыт продолжает существовать.

2. Изучение функций органов происходит на целостном организме.

3. Учитывается влияние нервной системы и гуморальных факторов в регуляции деятельности органов и их систем.

4. Учитывается влияние внешней среды на организм (последние 20 лет).

5. Преобладает системный подход к изучению функций организма и отдельных его органов.

Принципы павловской физиологии

1. Организм – это единое целое, которое обладает способностью к саморегуляции своих функций.

2. Принцип единства организма и внешней среды. Человек тонко приспособлен к той среде, в которой он живет. При изменении условий среды изменяется и организм, возникают болезни, дезадаптация.

3. Принцип нервизма. Нервизм – это направление в физиологии и медицине, которое стремится распространить влияние нервной системы на как можно большее количество функций организма.

Периоды развития нервизма

1. И. М. Сеченов, 1863 г., вышла работа «Рефлексы головного мозга». Основная идея монографии: вся сознательная и бессознательная деятельность человека – это рефлексы головного мозга.

2. В. М. Бехтерев – русский невропатолог и психиатр. Показал, что головной мозг человека участвует в регуляции деятельности всех внутренних органов. За счет головного мозга организм человека целесообразно уравновешен в окружающей среде.

3. В. П. Боткин – русский терапевт. Считал, что различные функции организма человека контролируются нервной системой, а при нарушении функции нервной системы развиваются нейрогенные заболевания, например гипертония, тиреотоксикоз.

4. Павлов – это имя соотносится с высшим этапом развития нервизма. Он считал, что центробежные нервы влияют на функции сердца и роль нервной системы в регуляции кровяного давления; значение нервной системы в регуляции секреторной и моторной функции желудочно-кишечного тракта неоспоримо велико. Также он показал, что нервная система принимает участие в приспособлении организма к новым условиям внешней среды за счет условных рефлексов; основоположник учений о типах нервной деятельности, доказал значение коры больших полушарий в деятельности животного и человека – распорядитель и распределитель деятельности.

2. Методы исследования в физиологии, понятия о функции, физиологической и фунциональных системах организма

Нормальная физиология – биологическая дисциплина, изучающая:

1) функции целостного организма и отдельных физиологических систем (например, сердечно-сосудистой, дыхательной);

2) функции отдельных клеток и клеточных структур, входящих в состав органов и тканей (например, роль миоцитов и миофибрилл в механизме мышечного сокращения);

3) взаимодействие между отдельными органами отдельных физиологических систем (например, образование эритроцитов в красном костном мозге);

4) регуляцию деятельности внутренних органов и физиологических систем организма (например, нервные и гуморальные).

Физиология является экспериментальной наукой. В ней выделяют два метода исследования – опыт и наблюдение. Наблюдение – изучение поведения животного в определенных условиях, как правило, в течение длительного промежутка времени. Это дает возможность описать любую функцию организма, но затрудняет объяснение механизмов ее возникновения. Опыт бывает острым и хроническим. Острый опыт проводится только на короткий момент и животное находится в состоянии наркоза. Из-за больших кровопотерь практически отсутствует объективность. Хронический эксперимент был впервые введен И. П. Павловым, который предложил оперировать животных (например, наложение фистулы на желудок собаки).

Большой раздел науки отведен изучению функциональных и физиологических систем.

Физиологическая система – это постоянная совокупность различных органов, объединенных какой-либо общей функцией. Образование таких комплексов в организме зависит от трех факторов:

1) обмена веществ;

2) обмена энергии;

3) обмена информации.

Функциональная система – временная совокупность органов, которые принадлежат разным анатомическим и физиологическим структурам, но обеспечивают выполнение особых форм физиологической деятельности и определенных функций. Она обладает рядом свойств, таких как:

1) саморегуляция;

2) динамичность (распадается только после достижения желаемого результата);

3) наличие обратной связи.

Благодаря присутствию в организме таких систем он может работать как единое целое.

Особое место в нормальной физиологии уделяется гомеостазу.

Гомеостаз – совокупность биологических реакций, обеспечивающих постоянство внутренней среды организма. Он представляет собой жидкую среду, которую составляют кровь, лимфа, цереброспинальная жидкость, тканевая жидкость. Их средние показатели поддерживают физиологическую норму (например, pH крови, величину артериального давления, количество гемоглобина и т. д.).

Итак, нормальная физиология – это наука, определяющая жизненно важные параметры организма, которые широко используются в медицинской практике.

Тема 2. Физиологические свойства и особенности функционирования возбудимых тканей

1. Физиологическая характеристика возбудимых тканей

Основным свойством любой ткани является раздражимость – способность ткани изменять свои физиологические свойства и проявлять функциональные отправления в ответ на действие раздражителей.

Раздражители – это факторы внешней или внутренней среды, действующие на возбудимые структуры.

Различают две группы раздражителей:

1) естественные (нервные импульсы, возникающие в нервных клетках и различных рецепторах);

2) искусственные: физические (механические – удар, укол; температурные – тепло, холод; электрический ток – переменный или постоянный), химические (кислоты, основания, эфиры и т. п.), физико-химические (осмотические – кристаллик хлорида натрия).

Классификация раздражителей по биологическому принципу:

1) адекватные, которые при минимальных энергетических затратах вызывают возбуждение ткани в естественных условиях существования организма;

2) неадекватные, которые вызывают в тканях возбуждение при достаточной силе и продолжительном воздействии.

К общим физиологическим свойствам тканей относятся:

1) возбудимость – способность живой ткани отвечать на действие достаточно сильного, быстрого и длительно действующего раздражителя изменением физиологических свойств и возникновением процесса возбуждения.

Мерой возбудимости является порог раздражения.

Порог раздражения – это та минимальная сила раздражителя, которая впервые вызывает видимые ответные реакции. Так как порог раздражения характеризует и возбудимость, он может быть назван и порогом возбудимости. Раздражение меньшей интенсивности, не вызывающее ответные реакции, называют подпороговым;

2) проводимость – способность ткани передавать возникшее возбуждение за счет электрического сигнала от места раздражения по длине возбудимой ткани;

3) рефрактерность – временное снижение возбудимости одновременно с возникшим в ткани возбуждением.

Рефрактерность бывает абсолютной (нет ответа ни на какой раздражитель) и относительной (возбудимость восстанавливается, и ткань отвечает на подпороговый или сверхпороговый раздражитель);

4) лабильность – способность возбудимой ткани реагировать на раздражение с определенной скоростью. Лабильность характеризуется максимальным числом волн возбуждения, возникающих в ткани в единицу времени (1 с) в точном соответствии с ритмом наносимых раздражений без явления трансформации.

2. Законы раздражения возбудимых тканей

Законы устанавливают зависимость ответной реакции ткани от параметров раздражителя. Эта зависимость характерна для высоко организованных тканей. Существуют три закона раздражения возбудимых тканей:

1) закон силы раздражения;

2) закон длительности раздражения;

3) закон градиента раздражения.

Закон силы раздражения устанавливает зависимость ответной реакции от силы раздражителя. Эта зависимость неодинакова для отдельных клеток и для целой ткани. Для одиночных клеток зависимость называется «все или ничего». Характер ответной реакции зависит от достаточной пороговой величины раздражителя. При воздействии подпороговой величиной раздражения ответной реакции возникать не будет (ничего). При достижении раздражения пороговой величины возникает ответная реакция, она будет одинакова при действии пороговой и любой сверхпороговой величины раздражителя (часть закона – все).

Для совокупности клеток (для ткани) эта зависимость иная, ответная реакция ткани прямо пропорциональна до определенного предела силе наносимого раздражения. Увеличение ответной реакции связано с тем, что увеличивается количество структур, вовлекающихся в ответную реакцию.

Закон длительности раздражений. Ответная реакция ткани зависит от длительности раздражения, но осуществляется в определенных пределах и носит прямо пропорциональный характер. Существует зависимость между силой раздражения и временем его действия. Эта зависимость выражается в виде кривой силы-времени. Эта кривая называется кривой Гоорвега – Вейса – Лапика. Кривая показывает, что каким бы сильным ни был бы раздражитель, он должен действовать определенный период времени. Если временной отрезок маленький, то ответная реакция не возникает. Если раздражитель слабый, то как бы длительно он ни действовал, ответная реакция не возникает. Сила раздражителя постепенно увеличивается, и в определенный момент возникает ответная реакция ткани. Эта сила достигает пороговой величины и называется реобазой (минимальная сила раздражения, которая вызывает первичную ответную реакцию). Время, в течение которого действует ток, равный реобазе, называется полезное время.

Закон градиента раздражения. Градиент – это «крутизна» нарастания раздражения. Ответная реакция ткани зависит до определенного предела от градиента раздражения. При сильном раздражителе примерно на третий раз нанесения раздражения ответная реакция возникает быстрее, так как она имеет более сильный градиент. Если постепенно увеличивать порог раздражения, то в ткани возникает явление аккомодации. Аккомодация – это приспособление ткани к медленно нарастающему по силе раздражителю. Это явление связано с быстрым развитием инактивации Na-каналов. Постепенно происходит увеличение порога раздражения, и раздражитель всегда остается подпороговым, т. е. порог раздражения увеличивается.

Законы раздражения возбудимых тканей объясняют зависимость ответной реакции от параметров раздражителя и обеспечивают адаптацию организмов к факторам внешней и внутренней среды.

3. Понятие о состоянии покоя и активности возбудимых тканей

О состоянии покоя в возбудимых тканях говорят в том случае, когда на ткань не действует раздражитель из внешней или внутренней среды. При этом наблюдается относительно постоянный уровень метаболизма, нет видимого функционального отправления ткани. Состояние активности наблюдается в том случае, когда на ткань действует раздражитель, при этом изменяется уровень метаболизма и наблюдается функциональное отправление ткани.

Основные формы активного состояния возбудимой ткани – возбуждение и торможение.

Возбуждение – это активный физиологический процесс, который возникает в ткани под действием раздражителя, при этом изменяются физиологические свойства ткани и наблюдается функциональное отправление ткани. Возбуждение характеризуется рядом признаков:

1) специфическими признаками, характерными для определенного вида тканей;

2) неспецифическими признаками, характерными для всех видов тканей (изменяются проницаемость клеточных мембран, соотношение ионных потоков, заряд клеточной мембраны, возникает потенциал действия, изменяющий уровень метаболизма, повышается потребление кислорода и увеличивается выделение углекислого газа).

По характеру электрического ответа существует две формы возбуждения:

1) местное, не распространяющееся возбуждение (локальный ответ). Оно характеризуется тем, что:

а) отсутствует скрытый период возбуждения;

б) возникает при действии любого раздражителя, т. е. нет порога раздражения, имеет градуальный характер;

в) отсутствует рефрактерность, т. е. в процессе возникновения возбуждения возбудимость ткани возрастает;

г) затухает в пространстве и распространяется на короткие расстояния, т. е. характерен декремент;

2) импульсное, распространяющееся возбуждение. Оно характеризуется:

а) наличием скрытого периода возбуждения;

б) наличием порога раздражения;

в) отсутствием градуального характера (возникает скачкообразно);

г) распространением без декремента;

д) рефрактерностью (возбудимость ткани уменьшается).

Торможение – активный процесс, возникает при действии раздражителей на ткань, проявляется в подавлении другого возбуждения. Следовательно, функционального отправления ткани нет.

Торможение может развиваться только в форме локального ответа.

Выделяют два типа торможения:

1) первичное, для возникновения которого необходимо наличие специальных тормозных нейронов. Торможение возникает первично, без предшествующего возбуждения;

2) вторичное, которое не требует специальных тормозных структур. Оно возникает в результате изменения функциональной активности обычных возбудимых структур.

Процессы возбуждения и торможения тесно связаны между собой, протекают одновременно и являются различными проявлениями единого процесса. Очаги возбуждения и торможения подвижны, охватывают большие или меньшие области нейронных популяций и могут быть более или менее выражены. Возбуждение непременно сменяется торможением и наоборот, т. е. между торможением и возбуждением существуют индукционные отношения.

4. Физико-химические механизмы возникновения потенциала покоя

Мембранный потенциал (или потенциал покоя) – это разность потенциалов между наружной и внутренней поверхностью мембраны в состоянии относительного физиологического покоя. Потенциал покоя возникает в результате двух причин:

1) неодинакового распределения ионов по обе стороны мембраны. Внутри клетки находится больше всего ионов калия, снаружи его мало. Ионов Na и ионов Cl больше снаружи, чем внутри. Такое распределение ионов называется ионной асимметрией;

2) избирательной проницаемости мембраны для ионов. В состоянии покоя мембрана неодинаково проницаема для различных ионов. Клеточная мембрана проницаема для ионов K, малопроницаема для ионов Na и непроницаема для органических веществ.

За счет этих двух факторов создаются условия для движения ионов. Это движение осуществляется без затрат энергии путем пассивного транспорта – диффузией в результате разности концентрации ионов. Ионы K выходят из клетки и увеличивают положительный заряд на наружной поверхности мембраны, ионы Cl пассивно переходят внутрь клетки, что приводит к увеличению положительного заряда на наружной поверхности клетки. Ионы Na накапливаются на наружной поверхности мембраны и увеличивают ее положительный заряд. Органические соединения остаются внутри клетки. В результате такого движения наружная поверхность мембраны заряжается положительно, а внутренняя – отрицательно. Внутренняя поверхность мембраны может не быть абсолютно отрицательно заряженной, но она всегда заряжена отрицательно по отношению к внешней. Такое состояние клеточной мембраны называется состоянием поляризации. Движение ионов продолжается до тех пор, пока не уравновесится разность потенциалов на мембране, т. е. не наступит электрохимическое равновесие. Момент равновесия зависит от двух сил:

1) силы диффузии;

2) силы электростатического взаимодействия.

Значение электрохимического равновесия:

1) поддержание ионной асимметрии;

2) поддержание величины мембранного потенциала на постоянном уровне.

В возникновении мембранного потенциала участвуют сила диффузии (разность концентрации ионов) и сила электростатического взаимодействия, поэтому мембранный потенциал называется концентрационно-электрохимическим.

Для поддержания ионной асимметрии электрохимического равновесия недостаточно. В клетке имеется другой механизм – Na-K-насос. Na-K-насос – механизм обеспечения активного транспорта ионов. В клеточной мембране имеется система переносчиков, каждый из которых связывает три иона Na, которые находятся внутри клетки, и выводит их наружу. С наружной стороны переносчик связывается с двумя ионами K, находящимися вне клетки, и переносит их в цитоплазму. Энергия берется при расщеплении АТФ. Работа Na-K насоса обеспечивает:

1) высокую концентрацию ионов К внутри клетки, т. е. постоянную величину потенциала покоя;

2) низкую концентрацию ионов Na внутри клетки, т. е. сохраняет нормальную осмолярность и объем клетки, создает базу для генерации потенциала действия;

3) стабильный концетрационный градиент ионов Na, способствуя транспорту аминокислот и сахаров.

5. Физико-химические механизмы возникновения потенциала действия

Потенциал действия – это сдвиг мембранного потенциала, возникающий в ткани при действии порогового и сверхпорогового раздражителя, что сопровождается перезарядкой клеточной мембраны.

При действии порогового или сверхпорогового раздражителя изменяется проницаемость клеточной мембраны для ионов в различной степени. Для ионов Na она повышается в 400–500 раз, и градиент нарастает быстро, для ионов К – в 10–15 раз, и градиент развивается медленно. В результате движение ионов Na происходит внутрь клетки, ионы К двигаются из клетки, что приводит к перезарядке клеточной мембраны. Наружная поверхность мембраны несет отрицательный заряд, внутренняя – положительный.

Компоненты потенциала действия:

1) локальный ответ;

2) высоковольтный пиковый потенциал (спайк);

3) следовые колебания:

а) отрицательный следовой потенциал;

б) положительный следовой потенциал.

Локальный ответ. Пока раздражитель не достиг на начальном этапе 50–75 % от величины порога, проницаемость клеточной мембраны остается неизменной и электрический сдвиг мембранного потенциала объясняется раздражающим агентом. Достигнув уровня 50–75 %, открываются активационные ворота (m-ворота) Na-каналов и возникает локальный ответ. Ионы Na путем простой диффузии поступают в клетку без затрат энергии. Достигнув пороговой силы, мембранный потенциал снижается до критического уровня деполяризации (примерно 50 мВ). Критический уровень деполяризации – это то количество милливольт, на которое должен снизиться мембранный потенциал, чтобы возник лавинообразный ход натрия в клетку. Если сила раздражения недостаточна, то локального ответа не происходит.

Высоковольтный пиковый потенциал (спайк). Пик потенциала действия является постоянным компонентом потенциала действия. Он состоит из двух фаз:

1) восходящей части – фазы деполяризации;

2) нисходящей части – фазы реполяризации.

Лавинообразное поступление ионов натрия в клетку приводит к изменению потенциала на клеточной мембране. Чем больше ионов натрия войдет в клетку, тем в большей степени деполяризуется мембрана, тем больше откроется активационных ворот. Постепенно заряд с мембраны снимается, а потом возникает с противоположным знаком. Возникновение заряда с противоположным знаком называется инверсией потенциала мембраны. Движение ионов натрия внутрь клетки продолжается до момента электрохимического равновесия по иону натрия. Амплитуда потенциала действия не зависит от силы раздражителя, она зависит от концентрации ионов натрия и от степени проницаемости мембраны к ионам натрия. Нисходящая фаза (фаза реполяризации) возвращает заряд мембраны к исходному знаку. При достижении электрохимического равновесия по ионам натрия происходит инактивация активационных ворот, снижается проницаемость к ионам натрия и возрастает проницаемость к ионам калия, Na-K-насос вступает в действие и восстанавливает заряд клеточной мембраны. Полного восстановления мембранного потенциала не происходит.

В процессе восстановительных реакций на клеточной мембране регистрируются следовые потенциалы: положительный и отрицательный. Следовые потенциалы являются непостоянными компонентами потенциала действия. Отрицательный следовой потенциал – следовая деполяризация в результате повышенной проницаемости мембраны к ионам натрия, что тормозит процесс реполяризации. Положительный следовой потенциал возникает при гиперполяризации клеточной мембраны в процессе восстановления клеточного заряда за счет выхода ионов калия и работы натрий-калиевого насоса.

Тема 3. Физиологические свойства нервов и нервных волокон

1. Приготовление нервно-мышечного препарата лягушки

Деятельность нервов и мышц в нормальной физиологии изучается на нервно-мышечном препарате лягушки.

В приготовлении нервно-мышечного препарата можно выделить три этапа:

1) приготовление препарата двух задних лапок лягушки;

2) приготовление препарата одной задней лапки лягушки;

3) приготовление нервно-мышечного препарата.

Основными компонентами нервно-мышечного препарата являются седалищный нерв, мионевральный синапс, икроножная мышца.

Для приготовления нервно-мышечного препарата лягушку предварительно обездвиживают, удаляют головной мозг, произведя разрез за глазными яблоками, и разрушают спинной мозг. Затем, взяв лягушку за задние лапки, большими ножницами производят поперечный разрез туловища на расстоянии 1–1,5 см от крыльев подвздошных костей.

Взяв в левую руку остаток позвоночника, правой рукой захватывают остаток кожи со спинной стороны, снимают ее со спины и обеих задних лапок. По обеим сторонам от обнаженного позвоночника отчетливо видны корешки спинного мозга, дающие начало нервам. Разъединив лапки, препарат разделяют, разрезая его большими ножницами через оставшуюся часть позвоночника и лобковое сочленение.

На задней поверхности бедра находят местоположение седалищного нерва. Он расположен между мышцами бедра. Тупым способом раздвигают мышцы и осторожно приподнимают седалищный нерв, отделяя его от отходящих мелких ветвей. После отпрепарирования нервного ствола от коленного сустава до позвоночника перерезают бедренную кость, удаляют бедренные мышцы и остаток позвоночника.

На голени тупым способом выделяют икроножную мышцу. Введя браншу ножниц под ахиллово сухожилие, перерезают его у места прикрепления к пяточной кости. Затем ниже коленного сустава перерезают кости голени и мышцы.

Для проверки препарата гальваническим пинцетом наносят раздражение на седалищный нерв. Нервный импульс распространяется через мионевральный синапс, в результате чего наблюдается сокращение икроножной мышцы.

2. Физиология нервов и нервных волокон. Типы нервных волокон

Физиологические свойства нервных волокон:

1) возбудимость – способность приходить в состояние возбуждения в ответ на раздражение;

2) проводимость – способность передавать нервные возбуждение в виде потенциала действия от места раздражения по всей длине;

На страницу:
1 из 3