bannerbanner
Island Life; Or, The Phenomena and Causes of Insular Faunas and Floras
Island Life; Or, The Phenomena and Causes of Insular Faunas and Florasполная версия

Полная версия

Island Life; Or, The Phenomena and Causes of Insular Faunas and Floras

Настройки чтения
Размер шрифта
Высота строк
Поля
На страницу:
17 из 45

These opinions, and the facts on which they are founded, are so weighty, that we can hardly doubt that, if the time since the Cambrian epoch is correctly estimated at 200 millions of years, the date of the commencement of life on the earth cannot be much less than 500 millions; while it may not improbably have been longer, because the reaction of the organism under changes of the environment is believed to have been less active in low and simple, than in high and complex forms of life, and thus the processes of organic development may for countless ages have been excessively slow.

But according to the physicists, no such periods as are here contemplated can be granted. From a consideration of the possible sources of the heat of the sun, as well as from calculations of the period during which the earth can have been cooling to bring about the present rate of increase of temperature as we descend beneath the surface, Sir William Thomson concludes that the crust of the earth cannot have been solidified much longer than 100 million years (the maximum possible being 400 millions), and this conclusion is held by Dr. Croll and other men of eminence to be almost indisputable.84 It will therefore be well to consider on what data the calculations of geologists have been founded, and how far the views here set forth, as to frequent changes of climate throughout all geological time, may affect the rate of biological change.

Denudation and Deposition of Strata as a Measure of Time.—The materials of all the stratified rocks of the globe have been obtained from the dry land. Every point of the surface is exposed to the destructive influences of sun and wind, frost, snow, and rain, which break up and wear away the hardest rocks as well as the softer deposits, and by means of rivers convey the worn material to the sea. The existence of a considerable depth of soil over the greater part of the earth's surface; of vast heaps of rocky débris at the foot of every inland cliff; of enormous deposits of gravel, sand, and loam; as well as the shingle, pebbles, sand or mud, of every sea-shore, alike attest the universality of this destructive agency. It is no less clearly shown by the way in which almost every drop of running water—whether in gutter, brooklet, stream or large river—becomes discoloured after each heavy rainfall, since the matter which causes this discolouration must be derived from the surface of the country, must always pass from a higher to a lower level, and must ultimately reach the sea, unless it is first deposited in some lake, or by the overflowing of a river goes to form an alluvial plain. The universality of this subaërial denudation, both as regards space and time, renders it certain that its cumulative effects must be very great; but no attempt seems to have been made to determine the magnitude of these effects till Mr. Alfred Tylor, in 1853,85 pointed out that by measuring the quantity of solid matter brought down by rivers (which can be done with considerable accuracy), we may obtain the amount of lowering of the land-area, and also the rise of the ocean level, owing to the quantity of matter deposited on its floor. A few years later Dr. Croll applied the same method in more detail to an estimate of the amount by which the land is lowered in a given period; and the validity of this method has been upheld by Sir A. Geikie, Sir Charles Lyell, and all our best geologists, as affording a means of actually determining with some approach to accuracy, the time occupied by one important phase of geological change.

The quantity of matter carried away from the land by a river is greater than at first sight appears, and is more likely to be under- than over-estimated. By taking samples of water near the mouth of a river (but above the influence of the tide) at a sufficient number of points in its channel and at different depths, and repeating this daily or at other short intervals throughout the year, it is easy to determine the quantity of solid matter held in suspension and solution; and if corresponding observations determine the quantity of water that is discharged, the total amount of solid matter brought down annually may be calculated. But besides this, a considerable quantity of sand or even gravel is carried along the bottom or bed of the river, and this has rarely been estimated, so that the figures hitherto obtained are usually under the real quantities. There is also another source of error caused by the quantity of matter the river may deposit in lakes or in flooded lands during its course, for this adds to the amount of denudation performed by the river, although the matter so deposited does not come down to the sea. After a careful examination of all the best records, Sir A. Geikie arrives at the following results, as to the quantity of matter removed by seven rivers from their basins, estimated by the number of years required to lower the whole surface an average of one foot:



Here we see an intelligible relation between the character of the river basin and the amount of denudation. The Mississippi has a large portion of its basin in an arid country, and its sources are either in forest-clad plateaux or in mountains free from glaciers and with a scanty rainfall. The Danube flows through Eastern Europe where the rainfall is considerably less than in the west, while comparatively few of its tributaries rise among the loftiest Alps. The proportionate amounts of denudation being then what we might expect, and as all are probably under rather than over the truth, we may safely take the average of them all as representing an amount of denudation which, if not true for the whole land surface of the globe, will certainly be so for a very considerable proportion of it. This average is almost exactly one foot in three thousand years.86 The mean altitude of the several continents has been recently estimated by Mr. John Murray,87 to be as follows: Europe 939 feet, Asia 3,189 feet, Africa 2020 feet, North America 1,888 feet, and South America 2,078 feet. At the rate of denudation above given, it results that, were no other forces at work, Europe would be planed down to the sea-level in about two million eight hundred thousand years; while if we take a somewhat slower rate for North America, that continent might last about four or five million years.88 This also implies that the mean height of these continents would have been about double what it is now three million and five million years ago respectively: and as we have no reason to suppose this to have been the case, we are led to infer the constant action of that upheaving force which the presence of sedimentary formations even on the highest mountains also demonstrates.

We have already discussed the unequal rate of denudation on hills, valleys, and lowlands, in connection with the evidence of remote glacial epochs (p. 173); what we have now to consider is, what becomes of all this denuded matter, and how far the known rate of denudation affords us a measure of the rate of deposition, and thus gives us some indication of the lapse of geological time from a comparison of this rate with the observed thickness of stratified rocks on the earth's surface.

How to Estimate the Thickness of the Sedimentary Rocks.—The sedimentary rocks of which the earth's crust is mainly composed consist, according to Sir Charles Lyell's classification, of fourteen great formations, of which the most ancient is the Laurentian, and the most recent the Post-Tertiary or Pleistocene; with thirty important subdivisions, each of which again consists of a more or less considerable number of distinct beds or strata. Thus, the Silurian formation is divided into Upper and Lower Silurian, each characterized by a distinct set of fossil remains, and the Upper Silurian again consists of a large number of separate beds, such as the Wenlock Limestone, the Upper Llandovery Sandstone the Lower Llandovery Slates, &c., each usually characterised by a difference of mineral composition or mechanical structure, as well as by some peculiar fossils. These beds and formations vary greatly in extent, both above and beneath the surface, and are also of very various thicknesses in different localities. A thick bed or series of beds often thins out in a given direction, and sometimes disappears altogether, so that two beds which were respectively above and beneath it may come into contact. As an example of this thinning out, American geologists adduce the Palæozoic formations of the Appalachian Mountains, which have a total thickness of 42,000 feet, but as they are traced westward thin out till they become only 4,000 feet in total thickness. In like manner the Carboniferous grits and shales are 18,000 feet thick in Yorkshire and Lancashire, but they thin out southwards, so that in Leicestershire they are only 3,000 feet thick; and similar phenomena occur in all strata and in every part of the world. It must be observed that this thinning out has nothing to do with denudation (which acts upon the surface of a country so as to produce great irregularities of contour), but is a regular attenuation of the layers of rock, due to a deficiency of sediment in certain directions at the original formation of the deposit. Owing to this thinning out of stratified rocks, they are on the whole of far less extent than is usually supposed. When we see a geological map showing successive formations following each other in long irregular belts across the country (as is well seen in the case of the Secondary rocks of England), and a corresponding section showing each bed dipping beneath its predecessor, we are apt to imagine that beneath the uppermost bed we should find all the others following in succession like the coats of an onion. But this is far from being the case, and a remarkable proof of the narrow limitation of these formations has been recently obtained by a boring at Ware through the Chalk and Gault Clay, which latter immediately rests on the Upper Silurian Wenlock Limestone full of characteristic fossils, at a depth of only 800 feet. Here we have an enormous gap, showing that none of earlier Secondary or late Palæozoic formations extend to this part of England, unless indeed they had been all once elevated and entirely swept away by denudation.89

But if we consider how such deposits are now forming, we shall find that the thinning out of the beds of each formation, and their restriction to irregular bands and patches, is exactly what we should expect. The enormous quantity of sediment continually poured into the sea by rivers, gradually subsides to the bottom as soon as the motion of the water is checked. All the heavier material must be deposited near the shore or in those areas over which it is first spread by the tides or currents of the ocean; while only the very fine mud and clay is carried out to considerable distances. Thus all stratified deposits will form most quickly near the shores, and will thin out rapidly at greater distances, little or none being formed in the depths of the great oceans. This important fact was demonstrated by the specimens of sea-bottom examined during the voyage of the Challenger, all the "shore deposits" being usually confined within a distance of 100 or 150 miles from the coast; while the "deep-sea deposits" are either purely organic, being formed of the calcareous or siliceous skeletons of globigerinæ, radiolarians, and diatomaceæ, or are clays formed of undissolved portions of these, together with the disintegrated or dissolved materials of pumice and volcanic dust, which being very light are carried by wind or by water over the widest oceans.

From the preceding considerations we shall be better able to appreciate the calculations as to the thickness of stratified deposits made by geologists. Professor Ramsay has calculated that the sedimentary rocks of Britain alone have a total maximum thickness of 72,600 feet; while Professor Haughton, from a survey of the whole world, estimates the maximum thickness of the known stratified rocks at 177,200 feet. Now these maximum thicknesses of each deposit will have been produced only where the conditions were exceptionally favourable, either in deep water near the mouths of great rivers, or in inland seas, or in places to which the drainage of extensive countries was conveyed by ocean currents; and this great thickness will necessarily be accompanied by a corresponding thinness, or complete absence of deposit, elsewhere. How far the series of rocks found in any extensive area, as Europe or North America, represents the whole series of deposits which have been made there we cannot tell; but there is no reason to think that it is a very inadequate representation of their maximum thickness, though it undoubtedly is of their extent and bulk. When we see in how many distinct localities patches of the same formation occur, it seems improbable that the whole of the deposits formed during any one period should have been destroyed, even in such an area as Europe, while it is still more improbable that they should be so destroyed over the whole world; and if any considerable portion of them is left, that portion may give a fair idea of their average, or even of their maximum, thickness. In his admirable paper on "The Mean Thickness of the Sedimentary Rocks,"90 Dr. James Croll has dwelt on the extent of denudation in diminishing the mean thickness of the rocks that have been formed, remarking, "Whatever the present mean thickness of all the sedimentary rocks of our globe may be, it must be small in comparison to the mean thickness of all the sedimentary rocks which have been formed. This is obvious from the fact that the sedimentary rocks of one age are partly formed from the destruction of the sedimentary rocks of former ages. From the Laurentian age down to the present day the stratified rocks have been undergoing constant denudation." This is perfectly true, and yet the mean thickness of that portion of the sedimentary rocks which remains may not be very different from that of the entire mass, because denudation acts only on those rocks which are exposed on the surface of a country, and most largely on those that are upheaved; while, except in the rare case of an extensive formation being quite horizontal, and wholly exposed to the sea or to the atmosphere, denudation can have no tendency to diminish the thickness of any entire deposit.91 Unless, therefore, a formation is completely destroyed by denudation in every part of the world (a thing very improbable), we may have in existing rocks a not very inadequate representation of the mean thickness of all that have been formed, and even of the maximum thickness of the larger portion. This will be the more likely because it is almost certain that many rocks contemporaneously formed are counted by geologists as distinct formations, whenever they differ in lithological character or in organic remains. But we know that limestones, sandstones, and shales, are always forming at the same time; while a great difference in organic remains may arise from comparatively slight changes of geographical features, or from difference in the depth or purity of the water in which the animals lived.92

How to Estimate the Average Rate of Deposition of the Sedimentary Rocks.—But if we take the estimate of Professor Haughton (177,200 feet), which, as we have seen, is probably excessive, for the maximum thickness of the sedimentary rocks of the globe of all known geological ages, can we arrive at any estimate of the rate at which they were formed? Dr. Croll has attempted to make such an estimate, but he has taken for his basis the mean thickness of the rocks, which we have no means whatever of arriving at, and which he guesses, allowing for denudation, to be equal to the maximum thickness as measured by geologists. The land-area of the globe is, according to Dr. Croll, 57,000,00093 square miles, and he gives the coast-line as 116,000 miles. This, however, is, for our purpose, rather too much, as it allows for bays, inlets, and the smaller islands. An approximate measurement on a globe shows that 100,000 miles will be nearer the mark, and this has the advantage of being an easily remembered even number. The distance from the coast, to which shore-deposits usually extend, may be reckoned at about 100 or 150 miles, but by far the larger portion of the matter brought down from the land will be deposited comparatively close to the shore; that is, within twenty or thirty miles. If we suppose the portion deposited beyond thirty miles to be added to the deposits within that distance, and the whole reduced to a uniform thickness in a direction at right angles to the coast, we should probably include all areas where deposits of the maximum thickness are forming at the present time, along with a large but unknown proportion of surface where the deposits were far below the maximum thickness. This follows, if we consider that deposit must go on very unequally along different parts of a coast, owing to the distance from each other of the mouths of great rivers and the limitations of ocean currents; and because, compared with the areas over which a thick deposit is forming annually, those where there is little or none are probably at least twice as extensive. If, therefore, we take a width of thirty miles along the whole coast-line of the globe as representing the area over which deposits are forming, corresponding to the maximum thickness as measured by geologists, we shall certainly over rather than under-estimate the possible rate of deposit.94

Now a coast line of 100,000 miles with a width of 30 gives an area of 3,000,000 square miles, on which the denuded matter of the whole land-area of 57,000,000 square miles is deposited. As these two areas are as 1 to 19, it follows that deposition, as measured by maximum thickness, goes on at least nineteen times as fast as denudation—probably very much faster. But the mean rate of denudation over the whole earth is about one foot in three thousand years; therefore the rate of maximum deposition will be at least 19 feet in the same time; and as the total maximum thickness of all the stratified rocks of the globe is, according to Professor Haughton, 177,200 feet, the time required to produce this thickness of rock, at the present rate of denudation and deposition, is only 28,000,000 years.95

The Rate of Geological Change Probably Greater in very Remote Times.—The opinion that denudation and deposition went on more rapidly in earlier times owing to the frequent occurrence of vast convulsions and cataclysms was strenuously opposed by Sir Charles Lyell, who so well showed that causes of the very same nature as those now in action were sufficient to account for all the phenomena presented by the rocks throughout the whole series of geological formations. But while upholding the soundness of the views of the "uniformitarians" as opposed to the "convulsionists," we must yet admit that there is reason for believing in a gradually increasing intensity of all telluric action as we go back into past time. This subject has been well treated by Mr. W. J. Sollas,96 who shows that, if, as all physicists maintain, the sun gave out perceptibly more heat in past ages than now, this alone would cause an increase in almost all the forces that have brought about geological phenomena. With greater heat there would be a more extensive aqueous atmosphere, and, perhaps, a greater difference between equatorial and polar temperatures; hence more violent winds, heavier rains and snows, and more powerful oceanic currents, all producing more rapid denudation. At the same time, the internal heat of the earth being greater, it would be cooling more rapidly, and thus the forces of contraction—which cause the upheaving of mountains, the eruption of volcanoes, and the subsidence of extensive areas—would be more powerful and would still further aid the process of denudation. Yet again, the earth's rotation was certainly more rapid in very remote times, and this would cause more impetuous tides and still further add to the denuding power of the ocean. It thus appears that, as we go back into the past, all the forces tending to the continued destruction and renewal of the earth's surface would be in more powerful action, and must therefore tend to reduce the time required for the deposition and upheaval of the various geological formations. It may be true, as many geologists assert, that the changes here indicated are so slow that they would produce comparatively little effect within the time occupied by the known sedimentary rocks, yet, whatever effect they did produce would certainly be in the direction here indicated, and as several causes are acting together, their combined effects may have been by no means unimportant. It must also be remembered that such an increase of the primary forces on which all geologic change depends would act with great effect in still further intensifying those alternations of cold and warm periods in each hemisphere, or, more frequently, of excessive and equable seasons, which have been shown to be the result of astronomical, combined with geographical, revolutions; and this would again increase the rapidity of denudation and deposition, and thus still further reduce the time required for the production of the known sedimentary rocks. It is evident therefore that these various considerations all combine to prove that, in supposing that the rate of denudation has been on the average only what it is now, we are almost certainly over-estimating the time required to have produced the whole series of formations from the Cambrian upwards.

Value of the Preceding Estimate of Geological Time.—It is not of course supposed that the calculation here given makes any approach to accuracy, but it is believed that it does indicate the order of magnitude of the time required. We have a certain number of data, which are not guessed but the result of actual measurement; such are, the amount of solid matter carried down by rivers, the width of the belt within which this matter is mainly deposited, and the maximum thickness of the known stratified rocks.97 A considerable but unknown amount of denudation is effected by the waves of the ocean eating away coast lines. This was once thought to be of more importance than sub-aërial denudation, but it is now believed to be comparatively slow in its action.98 Whatever it may be, however, it adds to the rate of formation of new strata, and its omission from the calculation is again on the side of making the lapse of time greater rather than less than the true amount. Even if a considerable modification should be needed in some of the assumptions it has been necessary to make, the result must still show that, so far as the time required for the formation of the known stratified rocks, the hundred million years allowed by physicists is not only ample, but will permit of even more than an equal period anterior to the lowest Cambrian rocks, as demanded by Mr. Darwin—a demand supported and enforced by the arguments, taken from independent standpoints, of Professor Huxley and Professor Ramsay.

Organic Modification Dependent on Change of Conditions.—Having thus shown that the physical changes of the earth's surface may have gone on much more rapidly and occupied much less time than has generally been supposed, we have now to inquire whether there are any considerations which lead to the conclusion that organic changes may have gone on with corresponding rapidity.

There is no part of the theory of natural selection which is more clear and satisfactory than that which connects changes of specific forms with changes of external conditions or environment. If the external world remains for a moderate period unchanged, the organic world soon reaches a state of equilibrium through the struggle for existence; each species occupies its place in nature, and there is then no inherent tendency to change. But almost any change whatever in the external world disturbs this equilibrium, and may set in motion a whole series of organic revolutions before it is restored. A change of climate in any direction will be sure to injure some and benefit other species. The one will consequently diminish, the other increase in number; and the former may even become extinct. But the extinction of a species will certainly affect other species which it either preyed upon, or competed with, or served for food; while the increase of any one animal may soon lead to the extinction of some other to which it was inimical. These changes will in their turn bring other changes; and before an equilibrium is again established, the proportions, ranges, and numbers, of the species inhabiting the country may be materially altered. The complex manner in which animals are related to each other is well exhibited by the importance of insects, which in many parts of the world limit the numbers or determine the very existence of some of the higher animals. Mr. Darwin says:—"Perhaps Paraguay offers the most curious instance of this; for here neither cattle, nor horses, nor dogs have ever run wild, though they swarm southward and northward in a wild state; and Azara and Rengger have shown that this is caused by the greater number in Paraguay of a certain fly, which lays its eggs in the navels of these animals when first born. The increase of these flies, numerous as they are, must be habitually checked by some means, probably by other parasitic insects. Hence, if certain insectivorous birds were to decrease in Paraguay, the parasitic insects would probably increase; and this would lessen the number of navel-frequenting flies—then cattle and horses would run wild; and this would certainly alter (as indeed I have observed in parts of South America) the vegetation: this again would largely affect the insects, and this, as we have seen in Staffordshire, the insectivorous birds, and so onwards in ever increasing circles of complexity."

На страницу:
17 из 45