bannerbanner
Настройки чтения
Размер шрифта
Высота строк
Поля
На страницу:
14 из 22

7. Is, then, the Moon inhabited? From the moon's proximity to us, (she is distant only thirty diameters of the earth, less than ten times the earth's circumference; a railroad carriage, at its ordinary rate of travelling, would reach her in a month,) she can be examined by the astronomer with peculiar advantages. The present powers of the telescope enable him to examine her mountains as distinctly as he could the Alps at a few hundred miles distance, with the naked eye; with the additional advantage that her mountains are much more brilliantly illuminated by the Sun, and much more favorably placed for examination, than the Alps are. He can map and model the inequalities of her surface, as faithfully and exactly as he can those of the surface of Switzerland. He can trace the streams that seem to have flowed from eruptive orifices over her plains, as he can the streams of lava from the craters of Etna or Hecla.

8. Now, this minute examination of the Moon's surface being possible, and having been made, by many careful and skilful astronomers, what is the conviction which has been conveyed to their minds, with regard to the fact of her being the seat of vegetable or animal life? Without exception, it would seem, they have all been led to the belief, that the Moon is not inhabited; that she is, so far as life and organization are concerned, waste and barren, like the streams of lava or of volcanic ashes on the earth, before any vestige of vegetation has been impressed upon them: or like the sands of Africa, where no blade of grass finds root. It is held, by such observers, that they can discern and examine portions of the moon's surface as small as a square mile;44 yet, in their examination, they have never perceived any alteration, such as the cycle of vegetable changes through the revolutions of seasons would produce. Sir William Herschel did not doubt that if a change had taken place on the visible part of the Moon, as great as the growth or the destruction of a great city, as great, for instance, as the destruction of London by the great fire of 1666, it would have been perceptible to his powers of observation. Yet nothing of the kind has ever been observed. If there were lunar astronomers, as well provided as terrestrial ones are, with artificial helps of vision, they would undoubtedly be able to perceive the differences which the progress of generations brings about on the surface of our globe; the clearing of the forests of Germany or North America; the embankment of Holland; the change of the modes of culture which alter the color of the ground in Europe; the establishment of great nests of manufactures which shroud portions of the land in smoke, as those which have their centres at Birmingham or at Manchester. However obscurely they might discern the nature of those changes, they would still see that change was going on. And so should we, if the like changes were going on upon the face of the Moon. Yet no such changes have ever been noticed. Nor even have such changes been remarked, as might occur in a mere brute mass without life;—the formation of new streams of lava, new craters, new crevices, new elevations. The Moon exhibits strong evidences, which strike all telescopic observers, of an action resembling, in many respects, volcanic action, by which its present surface has been formed.45 But, if it have been produced by such internal fires, the fires seem to be extinguished; the volcanoes to be burned out. It is a mere cinder; a collection of sheets of rigid slag, and inactive craters. And if the Moon and the Earth were both, at first in a condition in which igneous eruptions from their interior produced the ridges and cones which roughen their surfaces; the Earth has had this state succeeded by a series of states of life in innumerable forms, till at last it has become the dwelling-place of man; while the Moon, smaller in dimensions, has at an earlier period completely cooled down, as to its exterior at least, without ever being judged fit or worthy by its Creator of being the seat of life; and remains, hung in the sky, as an object on which man may gaze, and perhaps, from which he may learn something of the constitution of the universe; and among other lessons this; that he must not take for granted, that all the other globes of the solar system are tenanted, like that on which he has his appointed place.

9. It is true, that in coming to this conclusion, the astronomers of whom I speak, have been governed by other reasons, besides those which I have mentioned, the absence of any changes, either rapid or slow, discoverable in the Moon's face. They have seen reason to believe that water and air, elements so essential to terrestrial life, do not exist in the Moon. The dark spaces on her disk, which were called seas by those who first depicted them, have an appearance inconsistent with their being oceans of water. They are not level and smooth, as water would be; nor uniform in their color, but marked with permanent streaks and shades, implying a rigid form. And the absence of an atmosphere of transparent vapor and air, surrounding the moon, as our atmosphere surrounds the earth, is still more clearly proved, by the absence of all the optical effects of such an atmosphere, when stars pass behind the moon's disk, and by the phenomena which are seen in solar eclipses, when her solid mass is masked by the Sun.46 This absence of moisture and air in the Moon, of course, entirely confirms our previous conclusion, of the absence of vegetable and animal life; and leaves us, as we have said, to examine the question for the other bodies, on their special grounds, without any previous presumption that such life exists. Undoubtedly the aspect of the case will be different in one feature, when we see reason to believe that other bodies have an atmosphere; and if there be in any planet sufficient light and heat, and clouds and winds, and a due adjustment of the power of gravity, and the strength of the materials of which organized frames consist, there may be, so far as we can judge, life of some kind or other. But yet, even in those cases, we should be led to judge also, by analogy, that the life which they sustain is more different from the terrestrial life of the present period of the earth, than that is from the terrestrial life of any former geological period, in proportion as the conditions of light and heat, and attraction and density, are more different on any other planet, than they can have been on the earth, at any period of its history.

10. Let us then consider the state of these elements of being in the other planets. I have mentioned, among them, the force of gravity, and the density of materials; because these are important elements in the question. It may seem strange, that we are able, not only to measure the planets, but to weigh them; yet so it is. The wonderful discovery of universal gravitation, so firmly established, as the law which embraces every particle of matter in the solar system, enables us to do this, with the most perfect confidence. The revolutions of the satellites round their primary planets, give us a measure of the force by which the planets retain them in their orbits; and in this way, a measure of the quantity of matter of which each planet consists. And other effects of the same universal law, enable us to measure, though less easily and less exactly, the masses, even of those planets which have no satellites. And thus we can, as it were, put the Earth, and Jupiter or Saturn, in the balance against each other; and tell the proportionate number of pounds which they would weigh, if so poised. And again, by another kind of experiment, we can, as we have said, weigh the earth against a known mountain; or even against a small sphere of lead duly adjusted for the purpose. And this has been done; and the results are extremely curious; and very important in our speculations relative to the constitution of the universe.

11. And in the first place, we may remark that the Earth is really much less heavy than we should expect, from what we know of the materials of which it consists. For, measuring the density, or specific gravity, of materials, (that is their comparative weight in the same bulk,) by their proportion to water, which is the usual way, the density of iron is 8, that of lead 11, that of gold 19: the ordinary rocks at the Earth's surface have a density of 3 or 4. Moreover, all the substances with which we are acquainted, contract into a smaller space, and have their density increased, by being subjected to pressure. Air does this, in an obvious manner; and hence it is, that the lower parts of our atmosphere are denser than the upper parts; being pressed by a greater superincumbent weight, the weight of the superior parts of the atmosphere itself. Air is thus obviously and eminently elastic. But all substances, though less obviously and eminently, are still, really, and in some degree, elastic. They all contract by compression. Water for instance, if pressed by a column of water 100000 feet high, would be reduced to a bulk one-tenth less than before. In the same manner iron, compressed by a column of iron 90000 feet high, loses one-tenth of its bulk, and of course gains so much in density. And the like takes place, in different amounts, with all material whatever. This is the rate at which compression produces its effect of increasing the density, in bodies which are in the condition of those which lie around us. But if this law were to go on at the same rate, when the compression is greatly increased, the density of bodies deep down towards the centre of the Earth must be immense. The Earth's radius is above 20 million feet. At a million feet depth we should have matter subjected to the pressure of a column of a million feet of superincumbent matter, heavier than water; and hence we should have a compression of water 10 times as great as we have mentioned; and, therefore, the bulk of the water would be reduced almost to nothing, its density increased almost indefinitely: and the same would be the case with other materials, as metals and stones. If, therefore, this law of compression were to hold for these great pressures, all materials whatever, contained in the depths of the Earth's mass, must be immensely denser, and immensely specifically heavier, than they are at the surface. And thus, the Earth consisting of these far denser materials towards the centre, but, nearer the surface, of lighter materials, such as rock, and metals, in their ordinary state, must, we should expect, be, on the whole, much heavier than if it consisted of the heaviest ordinary materials; heavier than iron, or than lead; hundreds of times perhaps heavier than stone.

12. This, however, is not found to be so. The expectation of the great density of the Earth, which we might have derived from the known laws of condensation of terrestrial substances, is not confirmed. The mass of the Earth being weighed, by means of such processes as we have already referred to, is found to be only five times heavier than so much water: less heavy than if it were made of iron: less than twice as heavy as if it were made of ordinary rock. This, of course, shows us that the condensation of the interior parts of the Earth's mass, is by no means so great as we should have expected it to be, from what we know of the laws of condensation here; and from considering the enormous pressure of superincumbent materials to which those interior parts are subjected. The laws of condensation, it would seem, do not go on operating for these enormous pressures, by the same progression as for smaller pressure. If a mass of a material is compressed into nine-tenths its bulk by the weight of a column of 100000 feet high, it does not follow that it will be again compressed into nine-tenths of its condensed bulk, by another column of 100000 feet high. The compression and condensation reach, or tend to, a limit; and probably, before they have gone very far. It may be possible to compress a piece of iron by one-thousandth part, even by such forces as we can use; and yet it may not be possible to compress the same piece of iron into one half its bulk, even by the weight of the whole Earth, if made to bear upon it. This appears to be probable: and this will explain, how it is, that the materials of the Earth are not so violently condensed as we should have supposed; and thus, why, the Earth is so light.

13. We must avoid drawing inferences too boldly, on a subject where our means of knowledge are so obscure as they are with regard to the interior of the Earth; but yet, perhaps, we may be allowed to say, that the result which we have just stated, that the Earth is so light, suggests to us the belief that the interior consists of the same materials as the exterior, slightly condensed by pressure.47 We find no encouragement to believe that there is a nucleus within, of some material, different from what we have on the outside; some metal, for instance, heavier than lead. If the earth were of granite, or of lava, to the centre, it would, so far as we can judge, have much the same weight which it now has. Such a central mass, covered with the various layers of stone, which form the upper crust of the Earth, would naturally make this globe of at least the weight which it really has. And therefore, if we were to learn that a planet was much lighter than this, as to its materials,—much less dense, taking the whole mass together,—we should be compelled to infer that it was, throughout, or nearly so, formed of less compact matter than metal and stone; or else, that it had internal cavities, or some other complex structure, which it would be absurd to assume, without positive reasons.

14. Now having decided these views from an examination of the Earth, let us apply them to other planets, as bearing upon the question of their being inhabited; and in the first place, to Jupiter. We can, as we have said, easily compare the mass of Jupiter and of the Earth; for both of them have Satellites. It is ascertained, by this means, that the mass of weight of Jupiter is about 333 times the weight of the earth; but as his diameter is also 11 times that of the earth, his bulk is 1331 times that of the earth: (the cube of 11 is 1331); and, therefore, the density of Jupiter is to that of the earth, only as 333 to 1331, or about 1 to 4. Thus the density of Jupiter, taken as a whole, is about a quarter of the earth's density; less than that of any of the stones which form the crust of the earth; and not much greater than the density of water. Indeed, it is tolerably certain, that the density of Jupiter is not greater than it would be, if his entire globe were composed of water; making allowance for the compression which the interior parts would suffer by the pressure of those parts superincumbent. We might, therefore, offer it as a conjecture not quite arbitrary, that Jupiter is a mere sphere of water.

15. But is there anything further in the appearance of Jupiter, which may serve to contradict, or to confirm, this conjecture? There is one circumstance in Jupiter's form, which is, to say the least, perfectly consistent with the supposition, that he is a fluid mass; namely, that he is not an exact sphere, but oblate, like an orange. Such a form is produced, in a fluid sphere, by a rotation upon its axis. It is produced, even in a sphere which is (at present at least,) partly solid and partly fluid; and the oblateness of the earth is accounted for in this way. But Jupiter, who, while he is much larger than the earth, revolves much more rapidly, is much more oblate than the earth. His polar and equatorial diameters are in the proportion of 13 to 14. Now it is a remarkable circumstance, that this is the amount of oblateness, which, on mechanical principles, would result from his time of revolution, if he were entirely fluid, and of the same density throughout.48 So far, then, we have some confirmation at least, of his being composed entirely of some fluid which in its density agrees with water.

16. But there are other circumstances in the appearances of Jupiter, which still further confirm this conjecture of his watery constitution. His belts,—certain bands of darker and lighter color, which run parallel to his equator, and which, in some degree, change their form, and breadth, and place, from time to time,—have been conjectured, by almost all astronomers, to arise from lines of cloud, alternating with tracts comparatively clear, and having their direction determined by currents analogous to our trade-winds, but of a much more steady and decided character, in consequence of the great rotatory velocity.49 Now vapors, supplying the materials of such masses of cloud, would naturally be raised from such a watery sphere as we have supposed, by the action of the Sun; would form such lines; and would change their form from slight causes of irregularity, as the belts are seen to do. The existence of these lines of cloud does of itself show that there is much water on Jupiter's surface, and is quite consistent with our conjecture, that his whole mass is water.50

17. Perhaps some persons may be disposed to doubt whether, if Jupiter be, as we suppose, merely or principally a mass of water and of vapor, we are entitled to extend to him the law of universal gravitation, which is the basis of our speculations. But this doubt may be easily dismissed. We know that the waters of the earth are affected by gravitation; not only towards the earth, as shown by their weight, but towards those distant bodies, the Sun and the Moon; for this gravitation produces the tides of the ocean. And our atmosphere also has weight, as we know; and probably has also solar and lunar tides, though these are marked by many other causes of diurnal change. We have, then, the same reason for supposing that air and water, in other parts of the system, are governed by universal gravitation, and exercise themselves the attractive force of gravitation, which we have for making the like suppositions with regard to the most solid bodies. Whatever argument proves universal gravitation, proves it for all matter alike; and Newton, in the course of his magnificent generalization of the law, took care to demonstrate, by experiment, as well as by reasoning, that it might be so generalized.

18. As bearing upon the question of life in Jupiter, there is another point which requires to be considered; the force of gravity at his surface. Though, equal bulk for equal bulk, he is lighter than the earth, yet his bulk is so great that, as we have seen, he is altogether much heavier than the earth. This, his greater mass, makes bodies, at equal distances from the centres, ponderate proportionally more to him than they would do to the earth. And though his surface is 11 times further from his centre than the earth's is, and therefore the gravity at the surface is thereby diminished, yet, even after this deduction, gravity at the surface of Jupiter is nearly two and a half times that on the earth.51 And thus a man transferred to the surface of Jupiter would feel a stone, carried in his hands, and would feel his own limbs also, (for his muscular power would not be altered by the transfer,) become 21/2 times as heavy, as difficult to raise, as they were before. Under such circumstances animals of large dimensions would be oppressed with their own weight. In the smaller creatures on the earth, as in insects, the muscular power bears a great proportion to the weight, and they might continue to run and to leap, even if gravity were tripled or quadrupled. But an elephant could not trot with two or three elephants placed upon his back. A lion or tiger could not spring, with twice or thrice his own weight hung about his neck. Such an increase of gravity would be inconsistent then, with the present constitution and life of the largest terrestrial animals; and if we are to suppose planets inhabited, in which gravity is much more energetic than it is upon the earth, we must suppose classes of animals which are adapted to such a different mechanical condition.

19. Taking into account then, these circumstances in Jupiter's state; his (probably) bottomless waters; his light, if any, solid materials; the strong hand with which gravity presses down such materials as there are; the small amount of light and heat which reaches him, at 5 times the earth's distance from the sun; what kind of inhabitants shall we be led to assign to him? Can they have skeletons where no substance so dense as bone is found, at least in large masses? It would seem not probable.52 And it would seem they must be dwellers in the waters, for against the existence there of solid land, we have much evidence. They must, with so little of light and heat, have a low degree of vitality. They must then, it would seem, be cartilaginous and glutinous masses; peopling the waters with minute forms: perhaps also with larger monsters; for the weight of a bulky creature, floating in the fluid, would be much more easily sustained than on solid ground. If we are resolved to have such a population, and that they shall live by food, we must suppose that the waters contain at least so much solid matter as is requisite for the sustenance of the lowest classes; for the higher classes of animals will probably find their food in consuming the lower. I do not know whether the advocates of peopled worlds will think such a population as this worth contending for: but I think the only doubt can be, between such a population, and none. If Jupiter be a mere mass of water, with perhaps a few cinders at the centre, and an envelope of clouds around it, it seems very possible that he may not be the seat of life at all. But if life be there, it does not seem in any way likely, that the living things can be anything higher in the scale of being, than such boneless, watery, pulpy creatures as I have imagined.

20. Perhaps it may occur to some one to ask, if this planet, which presents so glorious an aspect to our eyes, be thus the abode only of such imperfect and embryotic lumps of vitality as I have described; to what purpose was all that gorgeous array of satellites appended to him, which would present, to intelligent spectators on his surface, a spectacle far more splendid than any that our skies offer to us: four moons, some as great, and others hardly less, than our moon, performing their regular revolutions in the vault of heaven. To which it will suffice, at present, to reply, that the use of those moons, under such a supposition, would be precisely the same, as the use of our moon, during the myriads of years which elapsed while the earth was tenanted by corals and madrepores, shell-fish and belemnites, the cartilaginous fishes of the Old Red Sandstone, or the Saurian monsters of the Lias; and in short, through all the countless ages which elapsed, before the last few thousand years: before man was placed upon the earth "to eye the blue vault and bless the useful light:" to reckon by it his months and years: to discover by means of it, the structure of the universe, and perhaps, the special care of his Creator for him alone of all his creatures. The moons of Jupiter, may in this way be of use, as our own moon is. Indeed we know that they have been turned to most important purposes, in astronomy and navigation. And knowing this, we may be content not to know how, either the satellites of Jupiter, or the satellite of the Earth, tend to the advantage of the brute inhabitants of the waters.

21. There is another point, connected with this doctrine of the watery nature of Jupiter, which I may notice, though we have little means of knowledge on the subject. Jupiter being thus covered with water, is the water ever converted into ice? The planet is more than 5 times as far from the sun as the earth is: the heat which he receives is, on that account, 25 times less than ours. The veil of clouds which covers a large part of his surface, must diminish the heat still further. What effect the absence of land produces, on the freezing of the ocean, it is not easy to say. We cannot, therefore, pronounce with any confidence whether his waters are ever frozen or not. In the next considerable planet, Mars, astronomers conceive that they do trace the effects of frost; but in Mars we have also appearances of land. In Jupiter, we are left to mere conjecture; whether continents and floating islands of ice still further chill the fluids of the slimy tribes whom we have been led to regard as the only possible inhabitants; or whether the watery globe is converted into a globe of ice; retaining on its surface, of course, as much fluid as is requisite, under the evaporating power of the sun, to supply the currents of vapor which form the belts. In this case, perhaps, we may think it most likely that there are no inhabitants of these shallow pools in a planet of ice: at any rate, it is not worth while to provide any new speculations for such a hypothesis.

На страницу:
14 из 22