bannerbanner
Essays Upon Heredity and Kindred Biological Problems
Essays Upon Heredity and Kindred Biological Problems

Полная версия

Essays Upon Heredity and Kindred Biological Problems

Язык: Английский
Год издания: 2018
Добавлена:
Настройки чтения
Размер шрифта
Высота строк
Поля
На страницу:
6 из 11

(5) ‘The Hyalineae are mostly biennial: they seldom live three years, and even in the largest species such an age is probably exceptional. The smallest Hyalineae and Helicidae live at most two years. The length of life is dependent upon the time at which the parents are fertilized, for this decides whether the young begin to shift for themselves early in the summer or later in the autumn, and so whether the first year’s growth is large or small.’

(6) ‘The species of Limnaeus, Planorbis, and Ancylus live two to three years, that is they take two to three years to attain the full size. L. auricularis is mostly biennial, L. palustris and L. pereger two to three years: I have found that the latter, in the mountains at Oberstorf in the Bavarian Alps, may exceptionally attain the age of four years, that is, it may possess three clearly defined annual markings, whilst the specimens from the plain never showed more than two.’

(7) ‘The Paludinidae attain an age of three or four years.’

(8) ‘The smaller bivalves, Pisidium and Cyclas, do not often live for more than two years: the larger Najadae, on the other hand, often live for more than ten years, and indeed they are not full grown until they possess ten to fourteen annual markings. It is possible that habitat may have great influence upon the length of life in this order.’

Unio and Anodonta become sexually mature in the third to the fifth year.’

As far as I am aware but few statements exist upon the length of life in marine mollusca, and these are for the most part very inexact. The giant bivalve Tridacna gigas must attain an age of 60 to 100 years23. All Cephalopods live for at least over a year, and most of them well over ten years; and the giant forms, sometimes mistaken for ‘sea-serpents,’ must require many decades in which to attain such a remarkable size. L. Agassiz has determined the length of life in a large sea snail, Natica heros, by sorting a great number of individuals according to their sizes: he places it at 30 years24.

I am glad to be able to communicate an observation made at the Zoological Station at Naples upon the length of life in Ascidians. The beautiful white Cionea intestinalis has settled in great numbers in an aquarium at the Station, and Professor Dohrn tells me that it produces three generations annually, and that each individual lives for about five months, and then reproduces itself and dies. External conditions accounting for this early death have not been discovered.

It is known that the freshwater Polyzoa are annual, but it is not known whether the first individuals produced from a colony in the spring, live for the whole summer. The length of life is also unknown in single individuals of any marine Polyzoon.

Clessin’s accurate statements upon the freshwater Mollusca, previously quoted, show that a surprisingly short length of life is the general rule. Only those forms of which the large size requires that many years shall elapse before the attainment of sexual maturity, live ten years or over (Unio, Anodonta); indeed, our largest native snail (Helix pomatia) only lives for four years, and many small species only one year, or two years if the former time is insufficient to render them sexually mature. These facts seem to indicate, as I think, that these molluscs are exposed to great destruction in the adult state, indeed to a greater extent than when they are young, or, at any rate, to an equal extent. The facts appear to be the reverse of those found among birds. The fertility is enormous; a single mussel contains several hundred thousand eggs; the destruction of young as compared with the number of eggs produced is distinctly smaller than in birds, therefore a much shorter duration of the life of each mature individual is rendered possible, and further becomes advantageous because the mature individuals are exposed to severe destruction.

However it can only be vaguely suggested that this is the case, for positive proofs are entirely absent. Perhaps the destruction of single mature individuals does not play so important a part as the destruction of their generative organs. The ravages of parasitic animals (Trematodes) in the internal organs of snails and bivalves are well known to zoologists. The ovaries of the latter are often entirely filled with parasites, and such animals are then incapable of reproduction.

Besides, molluscs have many enemies, which destroy them both on land and in water. In the water,—fish, frogs, newts, ducks and other water-fowl, and on land many birds, the hedgehog, toads, etc., largely depend upon them for food.

If the principles developed in this essay apply to the freshwater Mollusca, we must then infer that snails which maintain the mature condition—the capability of reproduction—for one year, are in this state more exposed to destruction from the attacks of enemies than those species which remain sexually mature for two or three years, or that the latter suffer from a greater proportional loss of eggs and young.

Note 6. Unequal Length of Life in the two Sexes

This inequality is frequently found among insects. The males of the remarkable little parasites infesting bees, the Strepsiptera, only live for two to three hours in the mature condition, while the wingless, maggot-like, female lives eight days: in this case, therefore, the female lives sixty-four times as long as the male. The explanation of these relations is obvious; a long life for the male would be useless to the species, while the relatively long life of the female is a necessity for the species, inasmuch as she is viviparous, and must nourish her young until their birth.

Again, the male of Phylloxera vastatrix lives for a much shorter period than the female, and is devoid of proboscis and stomach, and takes no food: it fertilizes the female as soon as the last skin has been shed and then dies.

Insects are not the only animals among which we find inequality in the length of life of the two sexes. Very little attention has been hitherto directed to this matter, and we therefore possess little or no accurate information as to the duration of life in the sexes, but in some cases we can draw inferences either from anatomical structure or from the mode of development. Thus, male Rotifers never possess mouth, stomach, or intestine, they cannot take food, and without doubt live much shorter lives than the females, which are provided with a complete alimentary canal. Again, the dwarf males of many parasitic Copepods—low Crustacea—and the ‘complementary males’ of Cirrhipedes (or barnacles) are devoid of stomach, and must live for a much shorter time than the females; and the male Entoniscidae (a family of which the species are endo-parasitic in the larger Crustacea), although they can feed, die after fertilizing the females; while the latter then take to a parasitic life, produce eggs, and continue to live for some time. It is supposed that the dwarf male of Bonellia viridis does not live so long by several years as the hundred times larger female, and it too has no mouth to its alimentary canal. These examples might be further increased by reference to zoological literature.

In most cases the female lives longer than the male, and this needs no special explanation; but the converse relation is conceivable, when, for instance, the females are much rarer than the males, and the latter lose much time in seeking them. The above-mentioned case of Aglia tau probably belongs to this category.

We cannot always decide conclusively whether the life of one sex has been lengthened or that of the other shortened; both these changes must have taken place in different cases. There is no doubt that a lengthening of life in the female has arisen in the bees and ants, for both sexes of the saw-flies, which are believed to be the ancestors of bees, only live for a few weeks. But among the Strepsiptera the shorter life of the male must have been secondarily acquired, since we only rarely meet with such an extreme case in insects.

Note 7. Bees

It has not been experimentally determined whether the workers, which are usually killed after some months, would live as long as the queen, if they were artificially protected from danger in the hive; but I think that this is probable, because it is the case among ants, and because the peculiarity of longevity must be latent in the egg. As is well known, the egg which gives rise to the queen is identical with that which produces a worker, and differences in the nutrition alone decide whether a queen or a worker shall be formed. It is therefore probable that the duration of life in queen and worker is potentially the same.

Note 8. Death of the Cells in higher Organisms

The opinion has been often expressed that the inevitable appearance of normal ‘death’ is dependent on the wearing out of the tissues in consequence of their functional activity. Bertin says, referring to animal life25:—‘L’observation des faits y attache l’idée d’une terminaison fatale, bien que la raison ne découvre nullement les motifs de cette nécessité. Chez les êtres qui font partie du règne animal l’exercise même de la rénovation moléculaire finit par user le principe qui l’entretient sans doute parceque le travail d’échange ne s’accomplissant pas avec une perfection mathématique, il s’établit dans la figure, comme dans la substance de l’être vivant, une déviation insensible, et que l’accumulation des écarts finit par amener un type chimique ou morphologique incompatible avec la persistance de ce travail.’

Here the replacement of the used-up elements of tissue by new ones is not taken into account, but an attempt is made to show that the functions of the whole organism necessarily cause it to waste away. But the question at once arises, whether such a result does not depend upon the fact that the single histological elements,—the cells,—are worn out by the exercise of function. Bertin admits this to be the case, and this idea of the importance of changes in the cells themselves is everywhere gaining ground. But although we must admit that the histological elements do, as a matter of fact, wear out, in multicellular animals, this would not prove that, nor explain why, such changes must follow from the nature of the cell and the vital processes which take place within it. Such an admission would merely suggest the question:—how is it that the cells in the tissues of higher animals are worn out by their function, while cells which exist in the form of free and independent organisms possess the power of living for ever? Why should not the cells of any tissue, of which the equilibrium is momentarily disturbed by metabolism, be again restored, so that the same cells continue to perform their functions for ever:—why cannot they live without their properties suffering alteration? I have not sufficiently touched upon this point in the text, and as it is obviously important it demands further consideration.

In the first place, I think we may conclude with certainty from the unending duration of unicellular organisms, that such wearing out of tissue cells is a secondary adaptation, that the death of the cell, like general death, has arisen with the complex, higher organisms. Waste does not depend upon the intrinsic nature of the cells, as the primitive organisms prove to us, but it has appeared as an adaptation of the cells to the new conditions by which they are surrounded when they come into combination, and thus form the cell-republic of the metazoan body. The replacement of cells in the tissues must be more advantageous for the functions of the whole organism than the unlimited activity of the same cells, inasmuch as the power of single cells would be much increased by this means. In certain cases, these advantages are obvious, as for example in many glands of which the secretions are made up of cast-off cells. Such cells must die and be separated from the organism, or the secretion would come to an end. In many cases, however, the facts are obscure, and await physiological investigation. But in the meantime we may draw some conclusions from the effects of growth, which are necessarily bound up with a certain rate of production of new cells. In the process of growth a certain degree of choice between the old cells which have performed their functions up to any particular time, and the new ones which have appeared between them, is as it were left to the organism.

The organism may thus, figuratively speaking, venture to demand from the various specific cells of tissues a greater amount of work than they are able to bear, during the normal length of their life, and with the normal amount of their strength. The advantages gained by the whole organism might more than compensate for the disadvantages which follow from the disappearance of single cells. The glandular secretions which are composed of cell-detritus, prove that the cells of a complex organism may acquire functions which result in the loosening of their connexion with the living cell-community of the body, and their final separation from it. And the same facts hold with the blood corpuscles, for the exercise of their function results in ultimate dissolution. Hence it is not only conceivable, but in every way probable, that many other functions in the higher organisms involve the death of the cells which perform them, not because the living cell is necessarily worn out and finally killed by the exercise of any ordinary vital process, but because the specific functions in the economy of the cell community which such cells undertake to perform, involve the death of the cells themselves. But the fact that such functions have appeared,—involving as they do the sacrifice of a great number of cells,—entirely depends upon the replacement of the old by newly formed cells, that is by the process of reproduction in cells26.

We cannot a priori dispute the possibility of the existence of tissues in which the cells are not worn out by the performance of function, but such an occurrence appears to be improbable when we recollect that the cells of all tissues owe their constitution to a very far-reaching process of division of labour, which leaves them comparatively one-sided, and involves the loss of many properties of the unicellular, self-sufficient organism. At any rate we only know of potential immortality in the cells which constitute independent unicellular organisms, and the nature of these is such that they are continually undergoing a complete process of reformation.

If we did not find any replacement of cells in the higher organism, we should be induced to look upon death itself as the direct result of the division of labour among the cells, and to conclude that the specific cells of tissues have lost, as a consequence of the one-sided development of their activities, the power of unending life, which belongs to all independent primitive cells. We should argue that they could only perform their functions for a certain time, and would then die, and with them the organism whose life is dependent upon their activity. The longer they are occupied with the performance of special functions, the less completely do they carry out the phenomena of life, and hence they lead to the appearance of retrogressive changes. But the replacement of cells is certain in many tissues (in glands, blood, etc.), so that we can never seek a satisfactory explanation in the train of reasoning indicated above, but we must assume the existence of limits to the replacement of cells. In my opinion, we can find an explanation of this in the general relations of the single individual to its species, and to the whole of the external conditions of life; and this is the explanation which I have suggested and have attempted to work out in the text.

Note 9. Death by Sudden Shock

The most remarkable example of this kind of death known to me, is that of the male bees. It has been long known that the drone perishes while pairing, and it was usually believed that the queen bites it to death. Later observations have however shown that this is not the case, but that the male suddenly dies during copulation, and that the queen afterwards bites through the male intromittent organ, in order to free herself from the dead body. In this case death is obviously due to sudden excitement, for when the latter is artificially induced, death immediately follows. Von Berlepsch made some very interesting observations on this point, ‘If one catches a drone by the wings, during the nuptial flight, and holds it free in the air without touching any other part, the penis is protruded and the animal instantly dies, becoming motionless as though killed by a shock. The same thing happens if one gently stimulates the dorsal surface of the drone on a similar occasion. The male is in such an excited and irritable condition that the slightest muscular movement or disturbance causes the penis to be protruded27.’ In this case death is caused by the so-called nervous shock. The humble-bees are not similarly constituted, for the male does not die after fertilizing the female, ‘but withdraws its penis and flies away.’ But the death of male bees, during pairing, must not be regarded as normal death. Experiment has shown that these insects can live for more than four months28. They do not, as a matter of fact, generally live so long; for—although the workers do not, as was formerly believed, kill them after the fertilization of the queen, by direct means—they prevent them from eating the honey and drive them from the hive, so that they die of hunger29.

We must also look upon death which immediately, or very quickly, follows upon the deposition of eggs as death by sudden shock. The females of certain species of Psychidae, when they reproduce sexually, may remain alive for more than a week waiting for a male: after fertilization, however, they lay their eggs and die, while the parthenogenetic females of the same species lay their eggs and die immediately after leaving the cocoon; so that while the former live for many days, the latter do not last for more than twenty-four hours. ‘The parthenogenetic form of Solenobia triquetrella, soon after emergence, lays all her eggs together in the empty case, becomes much shrunken, and dies in a few hours.’ (Letter from Dr. Speyer, Rhoden.)

Note 10. Intermingling during the Fission of Unicellular Organisms30

Fission is quite symmetrical in Amoebae, so that it is impossible to recognise mother and daughter in the two resulting organisms. But in Euglypha and allied forms the existence of a shell introduces a distinguishing mark by which it is possible to discriminate between the products of fission; so that the offspring can be differentiated from the parent. The parent organism, before division, builds the parts of the shell for the daughter form. These parts are arranged on the surface of that part of the protoplasm, external to the old shell, which will be subsequently separated as the daughter-cell. On this part the spicules are arranged and unite to form the new shell. The division of the nucleus takes place after that of the protoplasm, so that the daughter-cell is for some time without a nucleus. Although we can in this species recognise the daughter-cell for some time after separation from the parent by the greater transparency of its younger shell, it is nevertheless impossible to admit that the characteristics of the two animals are in any way different, for just before the separation of the two individuals a circulation of the protoplasm through both shells takes place after the manner described in the text, and there is therefore a complete intermingling of the substance of the two bodies.

The difference between the products is even greater after transverse fission of the Infusoria, for a new anus must be formed at the anterior part and a new mouth posteriorly. It is not known whether any circulation of the protoplasm takes place, as in Euglypha. But even if this does not occur, there is no reason for believing that the two products of division possess a different duration of life.

The process of fission in the Diatomaceae seems to me to be theoretically important, because here, as in the previously-mentioned Monothalamia (Euglypha, etc.), the new silicious skeleton is built up within the primary organism, but not, as in Euglypha, for the new individual only, but for both parent and daughter-cell alike31. If we compare the diatom shell to a box, then the two halves of the old shell would form two lids, one for each of the products of fission, while a new box is built up afresh for each of them. In this case there is an absolute equality between the products of fission, so far as the shell is concerned.

Note 11. Regeneration

A number of experiments have been recently undertaken, in connection with a prize thesis at Würzburg, in order to test the powers of regeneration possessed by various animals. In all essential respects the results confirm the statements of the older observers, such as Spallanzani. Carrière has also proved that snails can regenerate not only their horns and eyes, but also part of the head when it has been cut off, although he has shown that Spallanzani's old statement that they can regenerate the whole head, including the nervous system, is erroneous32.

Note 12. The Duration of Life in Plants

The title of the work on this subject mentioned in the Text is ‘Die Lebensdauer und Vegetationsweise der Pflanzen, ihre Ursache und ihre Entwicklung,’ F. Hildebrand, Engler’s botanische Jahrbücher, Bd. II. 1. und 2. Heft, Leipzig, 1881.

Note 13

[Many interesting facts and conclusions upon the subject of this essay will be found in a volume by Professor E. Ray Lankester, ‘On comparative Longevity in Man and the lower Animals,’ Macmillan and Co., 1870.—E. B. P.]

II.

ON HEREDITY.

1883

ON HEREDITY.

PREFACE

The following essay was my inaugural lecture as Pro-Rector of the University of Freiburg, and was delivered publicly in the hall of the University, on June 21, 1883; it first appeared in print in the following August. Only a few copies of the first edition were available for the public, and it is therefore now reprinted as a second edition, which only differs from the first in a few not unimportant improvements and additions.

The title which I have chosen requires some explanation. I do not propose to treat of the whole problem of heredity, but only of a certain aspect of it—the transmission of acquired characters which has been hitherto assumed to occur. In taking this course I may say that it was impossible to avoid going back to the foundation of all the phenomena of heredity, and to determine the substance with which they must be connected. In my opinion this can only be the substance of the germ-cells; and this substance transfers its hereditary tendencies from generation to generation, at first unchanged, and always uninfluenced in any corresponding manner, by that which happens during the life of the individual which bears it. If these views, which are indicated rather than elaborated in this paper, be correct, all our ideas upon the transformation of species require thorough modification, for the whole principle of evolution by means of exercise (use and disuse), as proposed by Lamarck, and accepted in some cases by Darwin, entirely collapses.

The nature of the present paper—which is a lecture and not an elaborate treatise—necessitates that only suggestions and not an exhaustive treatment of the subject could be given. I have also abstained from giving further details in the form of an appendix, chiefly because I could hardly have attempted to complete a treatment of the whole range of the subject, and I hope to refer again to these questions in the future, when new experiments and observations have been made.

I am very glad to see that such an important authority as Pflüger33 has in the meantime come to the same opinion, from an entirely different direction—an opinion which forms the foundation of the views here brought forward, namely, that heredity depends upon the continuity of the molecular substance of the germ from generation to generation.

На страницу:
6 из 11