Полная версия
Технологические и организационные аспекты процессов получения воды питьевого качества
Технологические и организационные аспекты процессов получения воды питьевого качества
Г. А. Самбурский
С. М. Пестов
© Г. А. Самбурский, 2016
© С. М. Пестов, 2016
ISBN 978-5-4483-5369-7
Создано в интеллектуальной издательской системе Ridero
От авторов:
В настоящее время одной из ключевых проблем устойчивого развития современной цивилизации является проблема снабжения населения чистой и безопасной водой. По разным оценкам до 1,1 млрд. чел. (17% населения) находятся в зоне риска из-за недостатка чистой питьевой воды, 400 млн. детей не имеют возможности пользоваться безопасной водой. В данной книге основное внимание уделено современным методам водоподготовки, используемым при организации централизованного водоснабжения населения, при этом кратко рассмотрены организационные и экономические аспекты применения технологий. Настоящее издание будет полезно специалистам в области водоснабжения, студентам, обучающимся по направлениям: «Техносферная безопасность», «Строительство», «Экология и природопользование», «Химия», а также всем тем, кто интересуется проблемами, встающими перед организацией централизованного водоснабжения.
Авторы выражают признательность Минобрнауки за финансовую поддержку издания книги (проект ПНИЭР RFMEFI58015X0004)
Рецензент: д.т.н., профессор Пупырев Е. И., президент Международного союза проектировщиков, председатель экспертно-технологического совета РАВВ, профессор НИУ МГСУ
Из истории водоснабжения
Значение воды как ресурса жизнедеятельности и экономического развития государства невозможно переоценить, и в истории развития цивилизации водному фактору всегда придавалось большое значение. Возможность обеспечения питьевой водой была основой для роста поселений, городов и мегаполисов уже начиная с древних цивилизаций Шумера, Вавилона и Египта (см. напр., [1, 2]). Разумеется, тогда речь шла только о транспортировке воды к поселениям. Водоводы – акведуки строились тогда от источника воды к месту поселения людей, которое располагалось ниже этого источника по высоте. Как правило, водоводы – акведуки представляли собой многокилометровые грандиозные конструкции в десятки метров высотой. В настоящее время многие акведуки – это памятники архитектуры, и место паломничества туристов. Конструкции сооружались из разных материалов, при этом чаще наиболее часто использовался камень, а наибольшего мастерства в этом вопросе достигли инженеры Древнего Рима.
Известно, что первый водопровод, протяженность которого составляла 16 км, появился в Риме в 312 г. до н. э. Уже к концу I века н.э. совокупная протяженность водопроводов в Риме увеличилась более, чем в 25 раз, было сооружено было девять акведуков, по которым в «вечный город» поступало до 700 тыс. м3 воды в день. Основой технологии подготовки воды являлся принцип естественной фильтрации, которая осуществлялась в последовательно соединенных резервуарах.
Жизнь крупных древних городов была немыслима без водоснабжения. Водоводы – акведуки сооружались повсеместно, и, к примеру, в сам Рим вода подавалась 11 акведуками. Однако самый протяженный акведук был построен римскими зодчими даже не в Италии, а на территории современного Туниса, для водоснабжения того самого пунического города Карфаген, который «должен быть разрушен», но был завоеван и стал римской провинцией. Там римляне построили водовод – акведук длиной 132 км, высота которого на некоторых участках была выше 20 м. Это по современным оценкам давало возможность подавать в город примерно 400 л/с воды. Сооружения по сбору воды в горах и некоторые фрагменты инфраструктуры этого гиганта, пережив практически 2 тысячелетия, сохранились до наших дней.
Помимо водоводов, древние города имели инфраструктуру как для хранения воды, так и для водоснабжения отдельных потребителей. В столице Византийской империи Константинополе, к примеру, существовало более 40 подземных водохранилищ. Так как в пределах города источников пресной воды не было, приходилось доставлять воду. Система водоснабжения Константинополя, обеспечивающая перемещение воды на расстояние порядка 650 км, не имела аналогов в античном мире. Основной водовод начинался в 240 километрах к западу от Константинополя в провинции Фракия. Сам водовод должен был идти под наклоном, чтобы поддерживать течение воды. Система включала и подземные тоннели, и каналы на поверхности земли, и акведуки и некоторые из них сохранились до наших дней.
Как мы понимаем, подвести воду в Константинополь было лишь половиной решения проблемы, т.к. воду надо было где-то хранить, что сложно в условиях городской застройки. Решением проблемы сохранения воды жители города были обязаны византийским инженерам, которые построили изумительную систему подземных водохранилищ. Со временем было создано более 150 подземных накопителей воды, а крупнейший из них – цистерна Базилика. Размеры самой цистерны – 140×70 метров (достаточно, чтобы наполнить водой почти 30 олимпийских пятидесятиметровых бассейнов). Своды цистерны поддерживают 336 колонн 8-метровой высоты. Этот резервуар строился почти 250 лет, в 4—6 веках н.э., после чего около 1000 лет использовался для хранения запасов питьевой воды. В настоящее время Цистерна Базилика является одним из самых популярных музеев Стамбула. Водохранилища поддерживали водоснабжение города в достаточном объеме даже летом в отсутствии дождей, когда акведук давал очень мало воды.
Красивым примером, показывающим очень высокий уровень развития технологий древнего мира, является Эфесский водопровод. Это сооружение было керамическим, подземной или надземной прокладки. Собирался водовод из небольших трубных секций, которые соединялись между собой растровыми соединениями (этот принцип соединения использовался и в Константинополе). Такого технологического уровня инфраструктуры знаменитые европейские города достигнут только к 18—19 веку.
Достаточно долгое время система обеспечения водой населения Европы по качеству намного уступала системе древнего Рима. К сожалению, на долгое время были утрачены технологии античных мастеров, централизованные системы водоснабжения отсутствовали, и все это серьезно ухудшало условия жизни и способствовало возникновению различного рода эпидемий.
Следует отметить, что история водоснабжения знает многое про системы транспортировки воды в Южной Америке. Эти были оригинальные и весьма технологичные системы транспорта воды, и создавались они индейскими племенами Южной Америки. Речь идет не о наземных сооружениях, но о системах сложных каналов и водохранилищ, которые позволяли транспортировать воду с гор к местам проживания людей. Кумбе-Майо, самый древний акведук такого типа на территории Южной Америки, длина которого около 8 км, был построен на высоте 3,3 км предположительно около 1500 г. до н. э. Совершенно уникальным инженерным сооружением была система водоснабжения священного города инков Мачу-Пикчу, построенного на высоте 2450 метров над уровнем моря, в Андах, на территории современного Перу в 15 веке н.э. – чистая вода из высокогорных источников направлялась в город системой искусственных каналов.
История развития водоснабжения в нашей стране также насчитывает многие века. Учитывая то, что города всегда строились рядом с реками, проблем связанным с большими расстояниями транспортировки воды в нашей стране практически не было. Однако говорить о централизованном водоснабжении населения стало возможно только с того момента, когда начала резко возрастать численность городского населения. В начале XIX века пущен первый московский городской водопровод длиной 16 км, подававший воду самотёком от села Мытищи. После реконструкции в 1878 году он имел всего 207 домовых ответвлений, из них 91 – в казенные и промышленные здания. В XIX веке централизованное водоснабжение развивалось, помимо Москвы, преимущественно в фабрично-заводских центрах, и охватывало не более 20% городов России, население которых превышало 10 тыс. человек. Но уже к 1910 году централизованные водопроводы были построены в 149 городах России против 10 – 1864 году. Протяженность уличных сетей водопроводов достигала 4800 верст, в том числе в Москве, Санкт-Петербурге, Варшаве и Одессе было построено 1689 верст сетей. Анализируя имеющиеся данные, отметим, что в балансе водных ресурсов при централизованном водоснабжении наибольшую долю составляли поверхностные воды рек – 35,2% водопроводов, подземные воды родников – 26,7%, грунтовых – 11% и артезианских колодцев – 14%. С появлением централизованных систем водоснабжения вырос уровень благоустройства жилья, кардинально улучшена санитарно-эпидемиологическая обстановка, была создана прочная основа для новых архитектурно – планировочных решений по дальнейшему развитию городов и других населенных пунктов. Истории развития водоснабжения в нашей стране посвящено множество публикаций (например, Алексея Порядина «Развитие водоснабжения в России. XX век». )
Уточним, что к началу 1991 г. централизованным водоснабжением было обеспечено 99% городов и 86% сельских поселений РСФСР. Уровень водопотребления на хозяйственно-питьевые и бытовые нужды в среднем достиг 327 литров в сутки на человека. Имеющиеся ресурсы природных пресных вод (поверхностных и подземных) позволяли, за редким исключением, выполнить задачу полного обеспечения потребностей населения страны в воде питьевого качества, в т.ч. с учетом перспективы развития, и при рациональном использовании воды действующие городские водопроводы могли обеспечивать нормальное водоснабжение. Сконструированные системы коммунального водоснабжения, их инфраструктурные и технологические элементы были проверены многолетней практикой. Однако известное безвременье, в котором оказалась экономика нашей страны, ухудшило состояние централизованного водоснабжения. Ряд предприятий водоснабжения оказалось в кризисном состоянии; среднесуточный объем питьевой воды, подаваемой в сеть, в целом по стране уменьшился более, чем на 15%; при этом заметно увеличилась доля ветхих сетей, требующих замены, выросли утечки и неучтенные расходы воды.
Кроме этого, по причине ухудшения состояния водных источников, достижение требуемого качества подаваемой населению питьевой воды требует применения новых технических решений. Проблемы, с которыми сталкиваются вододефицитные регионы. тоже требуют новых технологических подходов в части водообеспечения. Таким образом, проблема водоснабжения и обеспечение потребителей качественной питьевой водой связана с решением нескольких взаимосвязанных задач, к которым относятся:
Определение и обеспечение качества источника водоснабжения населенного пункта
Выбор технологий водоподготовки с учетом качества воды водоисточника и региональных особенностей
Обеспечение качества подаваемой абонентов воды в соответствии с требованиями санитарного законодательства
Экономическая возможность применения выбранных технических решений
Россия, обладая почти четвертью мировых запасов пресной воды, имеет стратегическое преимущество, роль которого в дальнейшем будет только возрастать. Однако вопросы обеспечения населения качественной питьевой водой – это не только экономическая и технологическая составляющая, но основа территориального развития и обеспечения безопасности нашей страны. Именно поэтому в данной работе предполагается рассмотреть основные технологические возможности получения воды питьевого качества, используя подход, называемый технологиями доступа к питьевой воде.
Глава 1. Общие вопросы организации питьевого водоснабжения
1.1 Показатели качества воды. Общая характеристика
Природная вода – это очень сложная дисперсная система, содержащая огромное количество минеральных и органических примесей. Качество воды, возможность ее использования для питья и в технических целях оценивается по целому ряду параметров, на основании которых осуществляется выбор решений по очистке воды. (см. напр., [1.2]). В нашей стране долгое время гигиенические требования по соответствию качества питьевой воды основывались ГОСТ 2874—82 «Вода питьевая». Согласно этому документу, качество воды определялось по группам показателей: микробиологических, токсикологических и органолептических. Начиная с 2001 г. требования гигиенического характера по качеству питьевой воды для централизованных систем водоснабжения определяют санитарные правила и нормы СанПиН 2.1.4.1074—01. В данном документе качество воды подразделяются на группы показателей: эпидемические; органолептические; радиологические; химические.
Группа показателей – эпидемические
Вода является весьма благоприятной средой для развития множественных форм простейших, бактерий, и высших организмов. Большое число развивающихся в воде микробов являются распространителями водных инфекций разного рода, типичным примером которых являются микроорганизмы – возбудители холеры, дизентерии, брюшного тифа и пр. Вода, помимо этого, может быть переносчиком различного рода паразитозов (аскарид, карликового цепня и пр.) и простейших (амеб, лямблий и пр.). Разнообразие форм патогенных организмов, сложность, дороговизна и длительность процесса их определения определяет необходимость анализа воды на наличие в ней т.н. маркерных микроорганизмов, которые указывают на потенциальную возможность патогенного загрязнения воды патогенной микрофлорой (табл. 1). В качестве критерия микробиологической чистоты выбрана кишечная палочка. Количество кишечных палочек в воде характеризуется коли-титром (к-т) – объемом воды (см3), в котором содержится одна кишечная палочка или коли-индексом (к-и) – количеством кишечных палочек в 1 л воды.
Таблица 1. Группа – эпидемические показатели
Группа показателей – органолептические
Запах, привкус, цветность и мутность определяют группу органолептических показателей воды (табл.2).
Таблица 2. Группа органолептические показатели качества воды
В общем случае определение запахов и привкусов связано с возможностью нахождения в воде растворенных газов, органических соединений, минеральных веществ, деятельностью микроорганизмов. По своему происхождению запах воды может быть естественным, т.е. природным (к примеру, болотный, гнилостный, землистый, сероводородный и др.) и искусственным (запах ароматических соединений, хлора, фенола, хлорфенола, нефти и др.).
Для количественной оценки запаха и привкуса применяют 5-балльную шкалу. Таким образом, вкусовые характеристики воды могут соответствовать терминам горьковатая, солоноватая, сладковатая, кисловатая и т. д. При повышении температуры, как правило, запахи и привкусы усиливаются. Вода считается соответствующей для питьевых целей, если при температуре 60 °С имеет оценку не более 2 баллов. Цветность воды или фактически окраска воды в тот или иной цвет, свойственна, как правило, водам поверхностных источников. Цветность измеряют в градусах стандартной платинокобальтовой шкалы при сравнении анализируемой при исследовании пробы с эталонной водой. Цветность может вызываться как природными соединениями (часто это гумины – высокомолекулярные соединения почвенного происхождения, фульвовые кислоты, коллоидные формы железа, ряд других окрашивающих ионов) и веществами антропогенного происхождения, в т.ч., поступающими со сточными водами. Цветность для питьевой воды не должна быть больше 20°. В ряде исключительных случаев, при согласовании с органами санитарного надзора, цветность может быть до 35°.
Мутность воды принято определять за счет изменения свойств света при его распространении через воду. Показатель мутности воды находится в прямой зависимости от наличия взвешенных частиц и определяется либо непосредственно – весовым методом, либо косвенно – по шрифту или кресту. Если отфильтровать механические примеси и взвесить на лабораторных весах отфильтрованную часть, то говорят про определении мутности весовым методом. Для питьевой воды мутность не должна превышать 1,5 мг/л. Отметим, что воду с высокой мутностью для питьевого водоснабжения использовать не рекомендовано, а иногда просто недопустимо.
Другим методом оценки мутности является измерение высоты столба воды в цилиндре, через который четко виден специальный шрифт или грани креста. При этом такая высота должна быть не менее 30 см при определении мутности по шрифту или как минимум 300 см – при определении по кресту. [1,2]. Традиционные методы основаны на определении толщи воды, через которую перестает быть различимой свеча или стандартная картинка из черных и белых кругов. Есть более точные фотометрические методы, которые определяют степень ослабления света от стандартного источника при прохождении сквозь слой воды заданной толщины. В России результат измерений выражают в мг/л при использовании основной стандартной суспензии каолина, или в ЕМ/л (единицы мутности на л) при использовании основной стандартной суспензии формазина. Иначе последнюю единицу измерения называют Единицей Мутности по Формазину (ЕМФ), а ее западный аналог – FTU (Formazine Turbidity Unit). Различные стандарты определения могут отличаться выбором стандарта источника света и названием соответствующей единицы мутности. Например, в стандарте ISO 7027 (Water quality – Determination of turbidity) используется светодиод LED с длиной волны 860 нм, при этом в качестве единицы измерения мутности используют FNU (Formazine Nephelometric Unit). С другой стороны, Агентство по Охране Окружающей Среды США (U.S. ЕРА) и Всемирная Организация Здравоохранения (ВОЗ) в качестве стандартного источника используют лампу накаливания с цветовой температурой 2200—3000 К, единица измерения мутности называется NTU (Nephelometric Turbidity Unit).
Тем не менее, все основные единицы измерения мутности численно совпадают, несмотря на разные методики и названия:
1 FTU (ЕМФ) = 1 FNU = 1 NTU = 1 ЕМ/л.
ВОЗ по показаниям влияния на здоровье мутность не нормирует, однако с точки зрения внешнего вида рекомендует, чтобы мутность была не выше 5 NTU, а для целей обеззараживания – не более 1 NTU.
Прозрачность. В зависимости от показателя прозрачности воды условно классифицируют как прозрачные, слабо опалесцирующие, опалесцирующие, слегка мутные, мутные, сильно мутные. При определения меры прозрачности анализируют высота столба воды, при которой возможно наблюдать погружаемую в водоисточник белую пластину определенного размера (диск Секки) или различать шрифт определенного размера и типа на белой бумаге (как правило, это шрифт средней жирности высотой 3,5 мм). Результаты выражаются в сантиметрах с указанием способа измерения.
Коллоидный индекс или индекс плотности осадка (SDI – Silt Density Index) является характеристикой наличия мелкодисперсных взвесей и коллоидных частиц, присутствующих в обрабатываемой воде. Показатель используется при определении эффективности различных технологий водоподготовки, связанных с удалением механических частиц и помогает, например, прогнозировать ситуацию со сроками непрерывной работы мембран установок обратного осмоса или нанофильтрационных мембранных установок. Определяется коллоидный индекс по изменению скорости фильтрования заданного объема раствора через микрофильтр с размером пор 0,45 мкм.
Группа показателей – радиологические
Подземные и поверхностные, минерализованные и геотермальные воды, формирование которых происходит в непосредственной близости от естественных природных залежей радиоактивных руд, жидкие и твердые радиоактивные отходы различного происхождения, собственно радиоактивные материалы, а также нарушения регламентов их переработки и хранения, возможные выбросы, сбросы и нештатные ситуации на радиационных объектах являются потенциальными источниками поступления радиоактивных веществ в водные объекты. В результате этого в водоисточниках обнаруживается присутствие изотопов цезия, трития, хрома, натрия, фосфора, кобальта и пр. Данные радиоактивные элементы могут находиться либо в форме катионов и анионов, либо и в виде различных комплексных соединений (табл. 3). Для осуществления измерений радиометрических показателей используют дозиметрические приборы. [2,9]
Таблица 3. Группа показателей – радиологические
Группа показателей – химические
К группе химических показателей, характеризующих загрязнение воды и водоисточников, относят в качестве так называемых обобщенных показателей водородный показатель рН, общая минерализация (сухой остаток), жесткость, щелочность, окисляемость, а также показатели значения концентрации растворенных форм органических и неорганических веществ, нефтепродуктов, поверхностно-активных веществ (ПАВ) и пр. (табл. 4).
Содержание минеральных солей оценивают по концентрации различных катионов и анионов, в зависимости от задач анализа.
Взвешенные частицы, в т.ч. химические соединения, не растворимые в воде, влияют на прозрачность воды; оценка их содержания позволяет оценить степень загрязненности воды частицами с условным диаметром более 1·10—4 мм (103 Å).
Взвешенные твердые примеси, присутствующие в природных водах, состоят из частиц глины, песка, ила, органических и неорганических веществ и различных микроорганизмов. При содержании в воде взвешенных веществ ниже 2—3 мг/л или с условным диаметром частиц меньше 1·10—4
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.