bannerbanner
Модернизация компьютера
Модернизация компьютера

Полная версия

Настройки чтения
Размер шрифта
Высота строк
Поля
На страницу:
2 из 3

Еще ниже находится один единственный разъем с тремя рядами штырьков. Этот разъем принадлежит видеокарте и предназначен для подключения Вашего монитора.

В самом низу мы видим полоску с большим числом «гнезд» и 16-ти штырьковым разъемом, они относятся к звуковой карте. 16-ти штырьковый разъем – это игровой порт, он служит для подключения игровых манипуляторов – джойстиков. Гнезда служат для подключения:

1. красного цвета – микрофона;

2. зеленого цвета – акустической системы;

3. синего цвета – внешнего источника звука, например магнитофона.

Гнезд может быть больше – это зависит от установленной звуковой карты. Порядок и число гнезд описывается в документации к звуковой карте, и все они помечены значками.

Еще один элемент находится на задней панели – это прорезь круглой формы на блоке питания. В этом месте в корпусе расположен вентилятор, который охлаждает теплонесущие детали.

Также на задней панели имеется шесть винтов, которые крепят боковые крышки системного блока. Если их открутить и снять боковые пластины мы увидим внутреннюю часть и начинку нашего системного блока.

Множество микросхем, плат и блоков и все это переплетается во множестве проводов и штекеров. С первого взгляда в эту мешанину, берет оторопь. Но не спешите, пройдет немного времени, и Вы будете совершенно спокойно ориентироваться в этих устройствах, будете знать, какие задачи каждое из них выполняет, и чем они отличаются друг от друга.

2.1.3. Блок питания компьютера

Блок питания относится к корпусу и продается вместе с ним.

Он должен быть достаточной мощности, чтобы питать все компоненты внутри системного блока. Его вторая функция – вентиляция и охлаждение всей системы. Многие компоненты, особенно сам блок питания, центральный процессор и жесткий диск, во время работы сильно разогреваются. Если не обеспечить надежную вентиляцию, возможны отказы из-за перегрева.

Кроме того, очень большое значение имеет надежность блока питания. В системах с повышенными требованиями иногда даже устанавливают резервный блок питания на случай выхода из строя основного. Ненадежность блоков питания связана, прежде всего, с тяжелыми режимами их работы – высокими напряжениями и большими токами.

Чтобы блок питания не доставил Вам лишних хлопот, запомните несколько советов специалистов.

• При покупке компьютера уточните мощность блока питания. Она должна быть не менее 250 Вт, иначе ее может не хватить для установки жесткого дополнительного диска, плат расширений, более мощного процессора, мультимедийного оборудования и т. п. Современные блоки питания часто рассчитаны на мощность в 300 Вт.

• Избегайте ненужных выключений и включений компьютера.

Если перерыв в работе небольшой, лучше не выключать питание. Для экономии электроэнергии лучше прибегнуть к функциям энергосбережения, которыми оснащены все современные компьютеры. Замедление работы процессора, остановка жесткого диска, гашение экрана монитора и другие меры снижают потребление энергии при паузах в работе.

• Не допускайте включения питания сразу после выключения компьютера. Обязательно сделайте паузу, хотя бы в 20–30 секунд. При выключениях и включениях сетевого выключателя из-за возникающих в его схеме переходных процессов блок питания испытывает самые большие нагрузки и выходит из строя чаще всего именно в эти моменты.

• Если Ваша электрическая сеть не отличается высокой надежностью: лампочки часто подмигивают, иногда пропадает свет, а в вечернее время понижается напряжение, – подумайте о дополнительных мерах защиты питания компьютера. Можно использовать стабилизаторы напряжения и сетевые фильтры импульсных помех типа «Пилот». В случаях, когда требования к надежности повышенные, нужно применять специальные блоки бесперебойного питания – UPS. UPS – отдельное устройство, которое использует сетевое напряжение для зарядки встроенных в него аккумуляторов, от которых и питается компьютер. Это недешевое, но нужное устройство.

Главный враг блока питания – обычная бытовая пыль. В среднем за год работы на дне корпуса блока питания накапливается слой пыли толщиной в 1–3 см. Эта пыль «слеживается» и не слишком мешает работе компьютера, но если положить его на бок при смене компонентов или перевезти в другое место, пыль переместится, и после включения в сеть блок питания может выйти из строя. Поэтому желательно регулярно обрабатывать блок питания с помощью пылесоса (для этого он имеет вентиляционные отверстия). Перед транспортировкой или обслуживанием компьютера это делать не просто желательно, а необходимо.

2.2. Внутренние устройства

2.2.1. Системная (материнская) плата

Системная (материнская) плата – это один из самых важных элементов нашего персонального компьютера. Она служит механической основой всей электронной схемы компьютера. На ней расположены: процессор (мозг ПК), проложены шины, расположены гнезда и разъемы для подключения с дополнительными модулями и периферийными устройствами, установлен целый ряд микросхем, генерирующий необходимое управление сигналами для функционирования компьютера и его памяти.


Системная (материнская) плата


Выбор процессора во многом определяется системной платой. Основные производители материнок фирмы Intel и AMD. Прочие фирмы разрабатывают совместимые или используют системы логики именно от этих фирм.

Фирма Intel выпускает процессоры Pentium и Celeron под оригинальный разъем Slot 1 или гнездо Socket 370.

Фирма AMD выпускает процессоры Athlon и Duron под оригинальный разъем Slot A или гнездо Socket A.

При покупке компьютера обращайте особое внимание на производителя процессора и материнской платы, т. к. Intel и AMD несовместимы.

Есть на системных платах другие разъемы и устройства, знание возможностей которых очень пригодится Вам при сборке или модернизации компьютера. Например, разъемы питания, к которым подключается куллер и индикаторы системного блока. Переключатели «джамперы», с их помощью можно отрегулировать многие параметры работы системной платы или «обнулить» содержимое микросхемы BIOS.

Поэтому, купив системную плату, нужно обязательно ознакомиться с документацией и узнать из нее какие разъемы и переключатели на ней находятся и за что они отвечают.

При всей своей внешней простоте системная плата – это весьма сложный организм, от каждого элемента которого, зависит быстродействие и стабильность работы всего компьютера в целом и отдельных его составляющих. Ниже мы рассмотрим, из чего состоит системная плата и с чем она взаимодействует.

2.2.2. Чипсет или набор системной логики

Чипсет – это микропроцессорный комплекс, от которого напрямую зависят самые важные характеристики системной платы, такие как: взаимодействие процессора со всем электронным хозяйством, скорость передачи данных, число поддерживаемых моделей процессоров, тип оперативной памяти и работа с ней.

Ранее системная плата состояла из множества микросхем. Потом их свели в четыре специализированные микросхемы, и этот комплект назвали чипсетом. Сегодня чипсеты состоят из двух микросхем, одна из которых называется Северный мост (North Bridge), а другая Южный мост (South Bridge). На системной плате это самые крупные микросхемы после процессора.

• Северный мост отвечает за быстродействующие компоненты: процессор, память, видеошину AGP.

• Южный мост отвечает за более медленные компоненты: шину PCI и все подключенные устройства, такие как: мышь, клавиатура, дисководы, принтер.

По маркировке чипсета можно определить его производителя и его марку. Поскольку функциональные возможности компьютера определяет чипсет, а от процессора зависит лишь скорость передачи, с которой эти функции выполняются, знать его марку и производителя во много раз важнее, чем производителя и марку процессора.

Чипсет должен быть согласован с процессором, поэтому не всякому процессору подойдет любая материнская плата.

Современные чипсеты используют Hub-архитектуру, которая обеспечивает более высокое быстродействие компонентов системной платы и в целом компьютера, в которой:

• Северный мост (North Bridge) называется Memory Controller Hub,

• Южный мост (South Bridge) называется Input/Output Controller Hub.

У фирмы AMD, для процессоров Athlon и Duron, собственные наборы чипсет с архитектурой North Bridge/South Bridge.

От чипсета системной платы зависят частота, на которой она может работать, объем оперативной памяти и количество устройств, которые можно к ней подключать. Поэтому при покупке компьютера, можно посоветовать, спрашивайте не какой у него процессор, а какой у него чипсет. От него, на сегодняшний день, зависит больше, чем от процессора.

2.2.3. Процессор

Центральный процессор (CPU – Central Processing Unit) – электронное устройство, которое программно управляет всей системой. Это одна из самых больших микросхем компьютера, его легко увидеть на системной плате. Он располагается на Slot-е определенной фирмы производителя.

В современных компьютерах не один процессор их несколько. Современные компьютеры являются мультипроцессорными устройствами. Требования к повышению быстродействия, качеству изображения и звука, скорости передачи данных привели к тому, что все составляющие компьютерной системы управляются процессорами (контроллерами), которым переданы функции по управлению конкретными устройствами. Выбор центрального процессора – это выбор возможностей компьютера. Производительность компьютера напрямую зависит от быстродействия центрального процессора. А быстродействие CPU определяется многими параметрами, но основными принято считать:

1. Тактовая частота – частота, отображающая количество колебаний электрического тока в секунду, обеспечивающая работоспособность процессора, измеряется в мега и гигагерцах (МГц и ГГц). Время, за которое происходит одно полное колебание, получило название такт. Чем выше тактовая частота, тем большее количество команд за единицу времени способен выполнить процессор. Тактовая частота процессора указывается рядом с его наименованием: Pentium IV, 2,8 ГГц; Athlon 1000; Celeron 633.

2. Частота системной шины – она определяет скорость передачи данных. Шина – физическая магистраль для передачи сигналов между устройствами. Чем больше разрядность шины, тем больше данных передается по ней за единицу времени. Частота системной шины прямо связана с частотой самого процессора через коэффициент умножения. Например, частота процессора 2,4 ГГц – это частота системной шины в 400 МГц, умноженная на коэффициент 6 (частота системной шины, умноженная процессором на заложенную в нем величину, в данном случае 6). Дорогие процессоры Intel работают на частотах системной шины 400, 533 МГц. А если быть более точным, то частота самой системной шины в этих случаях соответствуют 200 и 266 МГц соответственно. Ведь процессоры увеличивают ее, получая информацию от системной платы в несколько потоков. В некоторых процессорах можно «разогнать» частоту системной шины, из сотни процессоров на это способны лишь некоторые. В случае удачи резко повышается производительность компьютера. Так поднятие частоты системной шины для процессора Celeron 1.6 ГГц со 100 до 133 МГц, в этом случае повышается не только скорость обмена данными по системной шине, но и повышает скорость работы самого процессора, примерно до 2 ГГц. Но это если получится «разогнать» процессор, да и то с солидным охлаждением. В большинстве случаев это заканчивается плачевно, в лучшем случае процессор откажется работать, в худшем – выйдет из строя.

3. Кэш-память – встроенная память, предназначенная для временного хранения часто используемых данных и кодов. Процессор внутри себя почти ничего не хранит. У него немного ячеек (регистров), в которых данные обрабатываются. Поэтому и была разработана технология кэширования данных. Кэш – это небольшой набор ячеек памяти, играющий роль буфера. Если что-то считывается из общей памяти или записывается в нее, копия данных заносится в кэш-память. Это сделано для того, чтобы не извлекать необходимые данные издалека, а взять их из кэш-памяти. Кэш-память устанавливается пирамидой:

• Кэш-память первого уровня – самая быстрая по скорости, но самая малая по объему. Встраивается в кристалл процессора и работает на его тактовой частоте (на частоте ядра). Размер кэш-памяти первого уровня определяет количество информации, которую процессор может использовать, не обращаясь к кэш-памяти второго уровня и системной памяти. Ее размер измеряется всего – лишь десятками Кбайт, но она играет очень важную роль в быстродействии.

• Кэш-память второго уровня может быть интегрирована с кристаллом процессора, в этом случае она работает с частотой ядра процессора, но может располагаться и в отдельной микросхеме рядом с процессором, и будет кратна частоте процессора (половине ядра или две трети ядра). Если кэш-память интегрирована с кристаллом процессора, то ее быстродействие практически будет равно быстродействию кэш-памяти первого уровня. Размер кэш-памяти второго уровня определяет количество информации, которую процессор может использовать, не обращаясь к системной памяти. Поиск необходимой информации компьютер осуществляет сначала в кэш-памяти первого уровня, затем в кэш-памяти второго уровня и затем в системной памяти. Процессоры одной модели и с одной рабочей частотой могут различаться объемом кэш-памяти, в этом случае к маркировке добавляется определенная буква.

2.2.4. BIOS – базовая система ввода-вывода

BIOS (Basic Input Output System) – это базовая система ввода-вывода. Микросхема, в которой записаны все первичные программы, с которых начинается работа компьютера. Эту микросхему легко найти на системной плате, она, как и процессор не впаяна, а устанавливается на специальной колодке. Ее можно вынуть, но мы Вам этого делать, самостоятельно не рекомендуем. Для этого лучше обратиться к специалистам.

Программы BIOS производят проверку основных систем ПК сразу после включения. Это мы можем наблюдать на экране монитора, сразу после запуска. Зайти в BIOS можно сразу после включения компьютера, если нажать на клавишу DEL (на некоторых компьютерах возможна другая клавиша).

Мы можем поменять настройки программ BIOS самостоятельно, это удобно, поскольку не требуется разборка корпуса системного блока. Мы можем задать частоту системной плате, если она работает на нескольких частотах. Это можно сделать с помощью программы BIOS, так и на самой плате при помощи переключателей. Так же мы можем поменять коэффициент внутреннего умножения частоты процессора, кроме процессоров Intel Celeron, в них коэффициент фиксирован. Но в случае внесения неправильного параметра можно сделать программы BIOS не работоспособными, в этом случае компьютер не запустится.

Поэтому настройки менять нужно осторожно, и если Вы не знаете как-то лучше этого не делать. Восстановить многие настройки программным путем будет уже не возможно. В этом случае, настроить BIOS можно с помощью переключателей на системной плате.

2.2.5. Шины системной платы

Шины – это группы проводников, через которые происходит связь процессора с другими устройствами системной платы. По функциям различают три основных шины:

1. Шина процессора (внешняя) – высокоскоростная шина, предназначена для передачи данных между встроенной кэш-памятью и компонентом системной платы Северным мостом (North Bridge). Разрядность шины 32 или 64 бит. Работает на частотах 66 МГц., 100 МГц, 133 МГц, 200 МГц и т. д. Частота внешней шины процессора совпадает с частотой системной шины. Но имеется еще и внутренняя шина, она работает на повышенной частоте – тактовой частоте процессора, которая получается умножением частоты внешней шины на числовой множитель. Высокая тактовая частота внутренней шины процессора используется для передачи данных между регистрами процессора и кэш-памятью первого уровня или встроенной кэш-памятью второго уровня. Все шины, связывающие процессор с памятью, можно рассматривать как одну главную шину. Она называется шиной FSB (Front Side Bus), Когда говорят, что системная плата работает с частотой 66, 100, 133 МГц и т. д., то имеют в виду именно частоту главной шины, на которую опирается процессор. Получая эту частоту, процессор умножает ее на свой коэффициент внутреннего умножения.

2. Шина ISA (Industry Standard Architecture) – этот стандарт позволил добавить в главную шину разъемы для подключения дополнительных устройств и работать с ними, как с внутренними. Эта технология получила название АТ (Advanced Technology). Разработана она была еще в 80-х годах, но до сих пор используется. После внедрения стандарта ISA появилась возможность устанавливать на системной плате дополнительные платы, которые получили название карт расширения или просто карт, для подключения всего чего угодно. Со временем процессору требовались все более высокие частоты для общения с памятью, и их соединили специальной шиной, получившей название локальной. Шина ISA была отделена от локальной шины – они стали общаться через «мост». Сегодня функции ISA выполняет микросхема «Южного моста» чипсета.

3. Шина памяти – предназначена для обмена данными между процессором и оперативной памятью. Работает на частоте внешней шины процессора (частоте системной шины).

2.2.6. Разъемы для подключения внутренних устройств

На системной плате имеется множество всевозможных разъемов (слотов), предназначенных для подключения внутренних устройств. Их номенклатура и количество является важным фактором при выборе системной платы. Далее мы кратко рассмотрим все эти разъемы (слоты):

• Разъем (слот) стандарта PCI (Peripheral Component Interconnect) – разъемы для подключения дополнительных модулей: звуковая карта, внутренний модем, дополнительных контроллеров и т. д. На системной плате слотов PCI обычно четыре, иногда бывает меньше. Разъемы PCI самые короткие на плате, белого цвета, разделенные своеобразной перемычкой на две неравные части.

• Разъем AGP (Advanced Graphic Port) – ускоренный графический порт, предназначен для установки видеокарт формата AGP. Сегодня практически все видеокарты выпускаются для этого разъема.

• Разъем (слот) CNR/AMR (Audio Modem Riser Card) – предназначен для установки в компьютер встроенного модема или звуковой карты. Можно подключить их вместе, они работают по одному принципу – преобразовывают цифровой сигнал в звуковой, (акустический) слышимый человеческим ухом, а при необходимости и обратно. Слот AMR стоит на системных платах созданных на основе чипсетов Intel. На системных платах других производителей стоит другой разъем аналогичного назначения CNR.

• Разъемы (слоты) для установки оперативной памяти – предназначены для установки оперативной памяти, они, как правило, белого цвета, отличаются от слотов для плат по наличию специальных замочков «защелок». Слотов на системной плате может быть от двух до четырех. Слоты четко привязаны к одному типу оперативной памяти, установить в слот для памяти DDR SDRAM модули RDRAM мы просто не сможем. На некоторых системных платах имеются слоты для установки нескольких типов оперативной памяти: два слота для DDR SDRAM и два – для RDRAM. Даже в этом случае Вы можете установить оперативную память только одного типа.

• Разъемы для контроллеров E-IDE (расширенных IDE) – предназначены для подключения к системной плате внутренних устройств хранения и чтения информации: жестких дисков, дисководов CD-ROM, CD-RW, DVD и т. д. На системной плате находятся два контроллера E-IDE, к каждому из которых можно подключить до двух устройств:

• Primary Master (первое ведущее);

• Primary Slave (первое подчиненное);

• Secondary Master (второе ведущее);

• Secondary Slave (второе подчиненное).

Первым ведущим всегда ставится жесткий диск, именно с него производится загрузка системы. Вторым, как правило, ставится дисковод CD-ROM. На оставшиеся разъема можно подключить дисководы большой емкости: ZIP, ORB), дополнительный жесткий диск или дисководы CD-RW, DVD.

Для флоппи дисковода емкостью 1,44 Мб имеется специальный разъем, другое устройство подключить к нему невозможно.

Современные модификации контроллера E-IDE, предназначены для подключения быстрых жестких дисков, обеспечивают передачу данных со скоростью до 100 (Ultra DMA/100) или 133 Мб/с (Ultra DMA/133).

• Контроллеры SCSI – это один из самых старых и распространенных скоростных интерфейсов. SCSI – винчестеры работают куда быстрее и стабильнее, чем IDE. Поэтому практически все высокопроизводительные рабочие станции оснащены системными платами, поддерживающими SCSI. Количество устройств хранения, подключенных к одному контроллеру увеличено до 15, с четырех. Мы не рекомендуем заводить такой интерфейс на своем персональном компьютере, системная плата, имеющая такой интерфейс, стоит в два-три раза дороже обычной. Но если Вы желаете, такой контроллер иметь, а у Вас он не стоит, его всегда можно установить отдельно. SCSI имеет много модификаций и не все модификации совместимы друг с другом. Приведем самые популярные типы контроллеров SCSI:

• Fast SCSI – 2 (скорость передачи данных – до 10 Мб/с);

• Ultra Wide SCSI (скорость передачи данных – до 40 Мб/с);

• Ultra 2 Wide SCSI (скорость передачи данных – до 80 Мб/с).

На некоторых дорогих моделях системных плат контроллеры установлены непосредственно на плату, в других случаях Вы можете докупить контроллер отдельно и установив его в свободный PCI-слот.

2.2.7. Разъемы (порты) для подключения внешних устройств

О разъемах для подключения внешних устройств мы уже рассказывали выше в главе «Системный блок». Здесь мы о них расскажем немного подробней. И первое на что мы обратим Ваше внимание – это на терминологию. Вместо терминов «гнездо» и «разъем» в компьютерной терминологии принято употреблять слово «порт».

• Параллельный порт LPT – предназначен для подключения принтера, сканера, а также внешних устройств для хранения и транспортировки информации – накопителей. Он имеет 25-ти контактный разъем. До недавнего времени отличался сравнительно высокой скоростью передачи данных 2 Мб/с, пока не появился порт USB с более высокой скоростью передачи данных. LPT разъем стоит на задней стенке системного блока.

• Последовательные порты COM – предназначены для подключения мыши и модема. У них меньшая скорость передачи данных 112 Кб/с СОМ-портов на компьютере два, один 9-ти и второй 25-ти контактные разъемы. СОМ-порт для мыши уже утратил свое предназначение, мышь перекочевала на собственный разъем PS/2.

• Порт PS/2 – предназначены для подключения мыши и клавиатуры. Подключить к этим портам что-либо другое невозможно. Каждый из двух разъемов PS/2 на задней стенке системного блока предназначен только для своего устройства – мыши или клавиатуры. Поэтому под каждым разъемом имеются логотипы. Также они разделяются по цвету: зеленый разъем для мыши, фиолетовый разъем для клавиатуры.

• Последовательный порт USB (Universal Serial Bus) – этот интерфейс позволяет подключать к компьютеру любые устройства без перезагрузки системы. К старым портам можно было подключать одно устройство, то на один USB-порт можно подключить до 127 устройств, для этого необходимо приобрести концентратор (разветвитель). Единственное условие, которое следует соблюдать при работе с USB – первыми в цепочке должны быть самые производительные устройства: принтер, сканер, акустическая система, накопители. В самом конце медленные – клавиатура, мышь. На задней стенке системного блока находятся рва порта USB. Скорость передачи первой модификации USB 1.0 составляет 1,2 Мб/с, вторая – модификация USB 2.0 имеет скорость передачи до 60 Мб/с USB 2.0 совместима с устройствами USB старого формата, но работать они будут с прежней скоростью. Работа с устройствами USB – это одна из функций чипсета системной платы. Ее выполняет «Южный мост».

• Порт IEEE 1394 (Fire Wire) – служит для подключения мобильных накопителей, цифровых фотокамер, устройств для ввода в компьютер графики и звука. Этот порт стоит не во всех системных платах. На сегодняшний день контроллеры Fire Wire устанавливаются в системную плату дополнительно, в виде отдельной платы для разъема PCI. Однако в некоторые новые модели системных плат уже встроены микросхема и разъем порта IEEE 1394.

2.3. Память

2.3.1. Оперативная память

Оперативная память (Memory) – предназначена для приема, хранения и выдачи данных. Отличие оперативной памяти от постоянной, дисковой – в том, что информация хранится в ней не постоянно, а временно. При выключении компьютера все содержимое оперативной памяти стирается. Она служит, в основном, для промежуточных результатов вычислений. Доступ к оперативной памяти осуществляется намного быстрее, чем к дисковой. Для оперативной работы с данными, которые должны быть всегда под рукой, процессору необходима более быстродействующая память, чем жесткий диск. Хотя в нем самом встроена кэш-память, но объем ее мал, а для работы с современными программами необходимо намного больше памяти. Для этого и нужна компьютеру оперативная память – память с большой скоростью доступа. Оперативная память используется в разных устройствах персонального компьютера – от видеокарты до принтера. Микросхемы оперативной памяти в этом случае могут принадлежать к совершенно разным модификациям, хотя все они относятся к типу динамической оперативной памяти DRAM. В микросхемах буферной или кэш-памяти, установленной в жестких дисках, дисководах CD-ROM и в других устройствах. И в кэш первого и второго уровней, установленных на процессоре. Используется гораздо более быстрая статическая память SRAM. Емкость ее не велика, зато скорость ее работы в десятки раз выше. Говорить о модулях SRAM мы не будем, они надежно спрятаны во чрево всевозможных устройств.

На страницу:
2 из 3