bannerbanner
Эколого-экономический потенциал Башкортостана
Эколого-экономический потенциал Башкортостана

Полная версия

Эколого-экономический потенциал Башкортостана

Настройки чтения
Размер шрифта
Высота строк
Поля
На страницу:
2 из 3

По словам Клаудиа Андерс, на выставке «ТерраТэк-2007» представят последние достижения в области водоснабжения, ликвидации отходов, проэкспонируют экологические инновации, зарекомендовавшие себя на рынке природоохранных услуг.

Программа пребывания делегации Республики Башкортостан была очень насыщенна и разнообразна. Делегация приняла участие в открытии выставки «ТерраТэк-2007», в презентации Башкортостана на земле Свободного Государства Саксония Федеративной Республики Германия, в работе круглого стола по вопросам финансирования решения проблем окружающей среды и энергетики в Центральной и Восточной Европе.

Процесс «Окружающая среда для Европы» стал эффективным и динамичным в рамках кооперации внутри ЕЭК, выступающий как политическая движущая сила в достижении единогласия в создании экологически безопасной Европы, отметили собравшиеся на круглом столе.

Децентрализация административных механизмов и привлечение общественности к решению экологических проблем – вот новейшие европейские тенденции экологического развития.

Отметим обстановку, в которой развивается проблематика форума: в среднем, начиная с 1994 года и по 2006 год, общий объем экологических инвестиций в Восточную Европу стабильно сокращается. Страны-доноры стали давать меньше денег на реализацию природоохранных проектов.

Уменьшились и кредиты под экологические проекты, предоставляемые международными финансовыми институтами. Привлечение инвестиций к проектам, которые со временем сами смогут приносить прибыль, является одной из важнейших задач.

В 1997–2006 годах страны ЦВЕ получили финансовую помощь Запада примерно в три раза большую, чем новые независимые неприсоединившиеся государства.

В то же время кредиты международных финансовых институтов в страны ЦВЕ значительно сократились и были практически такими же, как в новых независимых государствах. Не слишком изменился общий курс и сегодня.

Прямые иностранные экологические программы и их инвестиции за последние годы значительно возросли. 75 % экологических инвестиций сосредоточено в Чехии, Словакии, Венгрии, Казахстане, Польше и России.

В целом в Центральной и Восточной Европе серьезно стоит проблема развития и укрепления национальных экологических финансовых институтов.

Международные институты и страны-доноры могут играть ведущую роль в создании национальных механизмов финансирования экологических проектов, предоставляя помощь пилотным проектам.

В многочисленных выступлениях было отмечено важнейшее значение интеграции идей о сохранении биоразнообразия в секторальную политику (Германия, Россия, Башкортостан), создание общеевропейской экологической сети, расширение национальной законодательной базы, соотнесение национальных и международных правовых документов.

Эти направления были обозначены как основные природоохранные задачи, кроме того, планируется развитие «эконета» – как наиболее приоритетного направления охраны живой природы.

По всей видимости, сохранение биологического и ландшафтного разнообразия остается вне основных интересов природоохранных ведомств стран бывшего СССР – с сожалением констатируют европейские экологи.

В ходе визита нашей делегации в Саксонию прошла презентация Республики Башкортостан и башкирско-саксонского экологического форума, посещение предприятий и учреждений, проведение переговоров с представителями деловых кругов Саксонии.

Члены делегации ознакомились с экспозициями саксонских предприятий, имеющих деловые контакты с предприятиями республики.

Индустриальная экология – будущее предпринимательства?

(«Предприниматель Башкортостана», № 06 (93), 27.04.07), № 22 (109), 14.12.07)

Не так давно Союз экологов РБ проводил мероприятия, направленные на защиту водных объектов Башкортостана. Среди задач – разъяснение природопользователям положений нового Водного кодекса РФ и обсуждение проблемы в сфере обеспечения населения и экономики республики водными ресурсами.

Отметим, что в Башкортостане продолжается реализация Президентской программы «Питьевые и минеральные воды Республики Башкортостан», рассчитанной на период с 2002 по 2010 годы. Координирует выполнение ее мероприятий Министерство жилищно-коммунального хозяйства РБ.

В рамках реализации этой программы в 2006 году по линии МЖКХ за счет государственных централизованных капитальных вложений строилось и реконструировалось 24 объекта водоснабжения и канализации.

Наиболее значимые из них – водопровод по улице Розы Люксембург в Баймаке, реконструкция водопровода в селе Киргиз-Мияки, ввод водозабора мощностью 1,185 тысячи кубических метров в сутки в селе Шаран. Большие работы проведены на водоводе в Янауле. Введены очистные сооружения канализации в Баймаке мощностью 1,5 тысячи кубометров в сутки. Улучшилось водоснабжение поселка Аркаим. Также была проведена реконструкция канализационной насосной станции села Михайловка Уфимского района.

На эти объекты за счет средств республиканского и федерального бюджетов было использовано около 329854000 рублей.

В рамках этой же программы Министерство природопользования, лесных ресурсов и охраны окружающей среды РБ продолжило строительство очистных сооружений в детском санатории «Сакмар» Хайбуллинского района. Были обустроены родники в Кушнаренковском, Миякинском и Янаульском районах. Укреплены берега реки Нугуш в районе деревни Абитово Мелеузовского района. Финансирование мероприятий программы по линии МПР составило 25500000 рублей. В реализации программы активное участие принимает Министерство сельского хозяйства республики.

По словам известного биолога Ю. Г. Симакова, защита окружающей среды от промышленных загрязнений – «тема века». Этот вопрос не волнует сейчас разве только тех, кто не представляет, насколько загрязнения опасны для здоровья планеты.

«Чтобы поставить им надежный заслон, – заявляет Юрий Симаков, – необходим четкий контроль за состоянием окружающей среды, нужны приборы, которые вовремя подскажут нам о сдвигах экологического равновесия в природе».

Физики и химики Башкортостана создали сейчас самые совершенные аналитические приборы. Многие из них быстро оценивают, сколько того или иного вещества в воздухе, воде или почве, точно определяют концентрацию. Но с экологической точки зрения все это мало что может сказать о будущем состоянии живого сообщества, тут важен биологический эффект загрязнения. Конечно, провести такой контроль можно только с помощью «живых приборов» – самих организмов, реагирующих на присутствие вредных веществ. И возможности применения таких «живых приборов» самые широкие.

Экологи республики утверждают: в промышленных городах Башкортостана только один процент питьевой воды соответствует первой категории качества, то есть не требует дополнительной подготовки – очистки и обеззараживания. Несмотря на то, что Россия занимает второе место в мире по наличию водных ресурсов, страна имеет проблемы с водоснабжением. Сохраняется дефицит водных ресурсов и на отдельных территориях Башкортостана. Остаются нерешенными вопросы в сфере регулирования рынка бутилированной воды в РБ. Проблемы, связанные с загрязнением рек Зауралья, вызывают обоснованную тревогу специалистов.

Биотестированием люди пользовались с давних времен. Шахтеры, например, брали в свои забои клетки с канарейками, которые начинали проявлять беспокойство при первых признаках появления ядовитых рудничных газах, когда люди еще ничего не ощущали. Теперь сравните огромный газоанализатор непрерывного действия с автоматическим управлением и маленькую канарейку, которые одинаково справляются со своей задачей. Кроме того, биологический прибор сам себя воспроизводит и «ремонтирует».

В 2006 году за счет государственных централизованных капитальных вложений ФГУ «Управление Башмелиоводхоз» (заказчик-застройщик) в рамках федеральных целевых программ выполнило строительно-монтажные работы 11 объектах водоснабжения сельских населенных пунктов, а также на строительстве четырех групповых водопроводов в Аургазинском, Хайбуллинском, Бакалинском и Бурзянском районах. Введено в эксплуатацию 25,4 километра локальных водопроводов в 11 населенных пунктах, 33,6 километра групповых водопроводов, подготовлено 20 проектов локальных водопроводов.

ФГУ «Центр стандартизации, метрологии и сертификации Республики Башкортостан» провело 37 инспекционных проверок соответствия качества выпускаемой продукции требованиям нормативной и технической документации. 36 предприятий республики, вырабатывающих питьевые и минеральные воды, имеют сертификаты соответствия.

Загрязнения бывают часто столь многосложны, что никакие созданные руками человека приборы не смогут определить вредность этой «каши». Ведь в сточных водах встречаются сотни, а иногда и тысячи различных соединений. Даже чистая вода по своему составу и содержанию многокомпонентна. Вот здесь-то и выручают тест-объекты – «живые приборы», организмы-индикаторы. Различные виды живых существ сами показывают, чем наполнена окружающая среда. При загрязнении воды и почвы в них выживают только те виды, которые могут выдержать присутствие высоких концентраций тех или иных химических соединений.

По данным Юрия Симакова не только крупные живые существа, но и микроскопический мир может многое подсказать экологу о надвигающейся опасности загрязнения.

Оказывается, у наших «живых приборов» есть такая особенность, которую не встретишь у их искусственных коллег: на определенных стадиях развития чувствительность к вредным веществам у организмов может возрастать в тысячи, а иногда и в миллионы раз.

В связи с этим правительство России планирует соглашение с МБРР о гранте правительства Японии для финансирования проекта развития экологических инвестиций по биотестированию в России. По этому соглашению выделяются $725 тысяч, сообщает правительственная пресс-служба.

Минэкономразвития и Минфин после вступления в силу соглашения должны будут заключить договоры, предусмотренные этим документом. Итак, у нас неожиданно появляются средства на те разработки, которые в научном плане уже подготовлены.

Например, как пишет Ю. Г. Симаков, «из растений удобнее всего будет взять одноклеточные водоросли – хлореллу и сценедесмус, а также известную всем ряску, покрывающую летом иногда всю поверхность маленьких водоемов. В качестве «живых приборов» используют планктонных ракообразных (чаще всего дафний), которыми буквально кишат все наши пруды, а из крупных донных животных, питающихся растительной пищей, – моллюсков прудовиков. И, наконец, рыб на различных стадиях развития. Лучше брать промысловых, ведь именно их нужно защищать от вредных веществ. Очень чувствительна к токсикантам форель.

Довольно простой прием, с помощью которого исследуют токсичность воды, – «рыбная проба». Наиболее чувствительных к вредным веществам рыб – окуней, ершей, форелей, щук, налимов и судаков – помещают в сетчатом садке непосредственно в реке и ведут за ними наблюдение. Беспокойное поведение рыб – уже сигнал. Ну а если рыба начала терять ориентировку в пространстве, переворачиваться и даже гибнуть, это уже катастрофическое положение.

Ученые и конструкторы пошли в этом вопросе дальше, применяя приборы, регистрирующие поведение рыб и их физиологические показатели. Некоторые из этих биотестирующих установок получились весьма оригинальными. Примером может служить длинный лоток, поставленный на выходе очищенных сточных вод, с помещенными в него форелями. Форель обычно держится против течения у притока, то есть там, где исследуемая вода втекает в лоток. Как только нарушается технологический процесс на линии или в очистных сооружениях и в воде появляется примесь вредных веществ, рыбы уходят в противоположный конец лотка, где находятся фотоэлементы, соединенные с системой сигнализации. Своим телом скопившиеся рыбы перекрывают лучи света, и вслед за этим следует сигнал тревоги.

Так как радужная форель обладает чрезвычайно острым «нюхом», ученые Башкортостана решили создать что-то наподобие рыбы-ищейки. В обонятельные области мозга радужной форели вживили электроды и соединили их с миниатюрным передатчиком, прикрепленным к голове рыбы. Сигналы, передаваемые от рыбы, регистрировались приемником, расположенным на берегу. Правда, для их расшифровки понадобилась ЭВМ. Зато форель точно сообщала о присутствии в воде вредных примесей, об их концентрации и о месте, где произведен анализ. Симбиоз сверхчувствительных живых датчиков и электронных анализаторов, возможно, и есть основа приборостроения будущего.

Часто приходится не просто исследовать загрязнение отдельных проб, а постоянно следить за состоянием воды в водоеме. Какие же живые системы могут вести этот неусыпный контроль, называемый мониторингом?

Такие существа нашлись. Ими оказались двустворчатые моллюски. Эти организмы и будут основной деталью в устройстве, которое мы сейчас рассмотрим. Одну створку перловицы можно зафиксировать, при этом перловица будет мало страдать, ведь протекающая мимо вода приносит ей кислород и пищу. Ко второй, свободной створке можно приделать рычаг или штангу, и тогда силой своих мышц перловица будет включать и выключать сигнализирующую систему. Остается только сказать, что моллюск предпочитает чистую воду, и, как только в протекающей мимо воде появится вредное загрязнение, тут же смыкает свои створки.

Живые индикаторы весьма разнообразны. Кто не видел лишайников, зеленой бородой свисающих с дремучих деревьев? Но все меньше и меньше становится их в лесах республики. Это признак загрязнения воздуха. Исчезают в лесах Башкортостана и муравейники. Причина не только в том, что все большее число людей посещает лес, но и в загрязнении окружающей среды.

Со шляпочными грибами происходит похожая история. Такие ценные грибы, как белые, подосиновики и подберезовики, тоже являются индикаторами загрязнения окружающей среды. Они не выдерживают загрязнения, потому и урожайность их снизилась за последние годы советской власти на 50,5 процента, а сейчас и вполовину не восстановилась.

В систему организмов-индикаторов включают также и мокриц, и дождевых червей, и даже почвенных простейших. Можно с успехом использовать в качестве живых индикаторов мелких грызунов. Для этой цели подходят полевки, лесные мыши.

Загрязнения на суше определяют не только по отдельным видам, но и по целым сообществам. Только в этом случае «живым прибором» служит уже не отдельное растение или даже их группа, а отражающая свет экосистема в целом, например, тундра, лес, пастбище.

Несколько по-иному обстоит дело с пресноводными биоценозами. Почти во всех таких водоемах встречаются виды, способные жить при определенном загрязнении. Это позволило создать шкалу сапробности, то есть степени загрязненности отдельных водоемов, в которых способны жить определенные организмы. Все загрязнение вод по шкале сапробности подразделяется на несколько зон.

За счет работы бактерий и всего населения водоема органическое вещество в воде минерализуется. Эта зона наиболее знакома человеку, ведь различного рода пруды, водохранилища, используемые не для питьевых целей, имеют такую загрязненность. В этой воде незначительное количество сероводорода, зато вода насыщена кислородом. Видовое разнообразие организмов-индикаторов в этой зоне выше, чем в других зонах. Из водорослей чаще всего встречаются диатомовые и зеленые. Например, известная всем хлорелла или нитчатые водоросли, образующие тину. В этих водах уже встречаются цветковые растения, а также ракообразные и рыбы.

Последняя зона – зона самой чистой воды. Бактерий здесь мало, видов животных и растений много, но число особей каждого вида невелико. Рыбы, обитающие здесь, обычно холоднолюбивые, предпочитают высокое содержание кислорода в воде. Это радужная и ручьевая форели, красноперки, сиг, рипус.

Однако в настоящее время, когда в водоемы приток сточных вод с промышленными токсичными веществами усилился, уже недостаточно для оценки загрязнения одной шкалы сапробности. Ученые считают, что настало время разработки трех шкал, которые позволили бы оценить степень загрязнения воды с помощью живых индикаторов. Гидробиологи и не ожидали, что на их пути встретится столь трудная задача.

Найдут ли биологи верные пути применения живых индикаторов для определения загрязнения или бросят все силы на разработку систем биотестирования, подскажет будущее».

Приобретает массовый характер застройка берегов озер и водохранилищ объектами, не оснащенными очистными сооружениями. Эта проблема актуальна сегодня для озера Кандрыкуль и Павловского водохранилища. Незаконное использование озер приводит к сокращению рыбных запасов в регионе.

При этом новый Водный кодекс РФ, вступивший в силу 1 января 2007 года, вызывает множество вопросов правоприменения. В нем не прописан четко порядок предоставления водных объектов. В связи с этим практика оформления документации на водопользование складывается довольно сложно. На федеральном уровне в настоящее время разрабатываются подактные документы, которые должны будут внести ясность.

Инновации под микроскопом

Нанотехнологические перспективы экономики Башкортостана

(«Предприниматель Башкортостана», № 08 (95), 25.05.07, № 22 (109), 14.12.07; «Истоки», № 20, 16.05.07)

На сегодняшний день большинство россиян, к сожалению, имеют смутное представление о нанотехнологиях. В ходе апрельского опроса в республике каждый десятый ответивший на открытый вопрос о значении слова «нанотехнологии» затруднился дать его определение. Между тем нанотехнологии широко внедряются в жизнь республики. Так, представители предпринимательских кругов приняли активное участие в проведении трех научно-практических конференций «Нанотехнологии – производству» в 2004, 2005 и 2006 годах. Сейчас идет активная подготовка к проведению четвертой такой конференции.

В Республике Башкортостан намерены реализовывать инструкции, полученные в федеральных органах исполнительной власти в области нанотехнологий и наноматериалов.

Присуждена Государственная премия Республики Башкортостан в области науки и техники за фундаментальное исследование в области нанофизики и нанотехнологий, выполненное в республике.

В Башкортостане действует филиал компании «Нанотехнология МДТ» (Екатеринбург, Челябинск, Пермь, Курган, Тюмень; Башкортостан), которая была организована в 1991 году с целью применить накопленные опыт и знания в области нанотехнологии для Урало-Поволжского региона. В частности, разрабатываются нанотехнологии получения поверхностей с наноструктурированными покрытиями на деталях энергетических установок и др.

На одном из заседаний Башкирского отделения Научного совета РАН по методологии искусственного интеллекта завкафедрой математики и информатики БИСТ профессором М. Доломатовым был прочитан интереснейший доклад на тему нанотехнологий. Так что же такое нанотехнология и с чем ее едят?

Мизерные устройства

Греческое слово «нанос» означает «гном», им обозначают миллиардные части целого. Нанотехнологии – область прикладной науки и техники, занимающаяся изучением свойств объектов и разработкой устройств размеров порядка нанометра (по системе единиц СИ, 10-9 метра).

Историк науки Ричард Букер отмечает, что историю нанотехнологии создать сложно из-за неопределенности самого этого понятия. Чарльз Пул, автор книги «Введение в нанотехнологию», приводит такой пример: в Британском музее хранится так называемый «Кубок Ликурга», изготовленный древнеримскими мастерами, – он содержит микроскопические частицы золота и серебра, добавленные в стекло. При различном освещении кубок меняет цвет – от темно-красного до светло-золотистого. Но это не означает, что в Риме была использована нанотехнология.

Технологии: обычные и нано

Вещество может иметь качественно новые физические и химические свойства, если оно очень мелко раздроблено. Частицы размерами от 1 до 1000 нанометров обычно называют «наночастицами». Так, например, оказалось, что наночастицы некоторых материалов имеют очень хорошие каталитические и адсорбционные свойства. Другие материалы показывают удивительные оптические свойства: например, сверхтонкие пленки органических материалов применяют для производства солнечных батарей. Уже сегодня ученым удалось добиться взаимодействия искусственных наночастиц с природными объектами наноразмеров – рибосомами, белками, нуклеиновыми кислотами… наночастицы могут организовываться в пространственные структуры. Такие структуры также проявляют необычные химические и физические свойства.

Нанотехнологии качественно отличаются от традиционных инженерных дисциплин, потому что это технологии микромира, или пограничной области между нашим и квантовым миром. Обычные технологии металлов, химические технологии в таких масштабах совершенно изменяются. Очень сильно начинают проявляться квантовые свойства вещества. Это дает возможность разработки таких устройств, как молекулярные машины, нанороботы, квантовые компьютеры, молекулярные компьютеры и прочее.

Нанотехнологии и современный мир

Уже к 2004 году мировые инвестиции в сферу разработки нанотехнологий почти удвоились по сравнению с 2003 годом и достигли $ 10 млрд. Мировыми лидерами по общему объему капиталовложений в этой сфере стали Япония и США. На долю США ныне приходится примерно треть всех мировых инвестиций в нанотехнологии. Много в этой области работают Европейский Союз, Япония, Канада, Китай, Южная Корея, Израиль, Сингапур, Бразилия и другие государства. В США одни только федеральные ассигнования на нанотехнологические программы и проекты выросли с $ 464 млн. в 2001 году до $ 1 млрд. в 2005-м. В 2006 году США выдели на эти цели дополнительно $ 1,1 млрд. Еще $ 4 млрд. в 2006 году потратили на те же цели американские корпорации. На Западе нанолаборатории создают гиганты большого бизнеса – например, General Electric, IBM, Bell, BASF, крупные университеты. Прогнозы показывают, что к 2015 году общая численность персонала различных отраслей нанотехнологической промышленности может дойти до 10 млн. человек, а суммарная стоимость товаров, производимых с использованием наноматериалов, приблизится к $ 1 трлн.

Начало

В 1931 году немецкие физики Макс Кнолл и Эрнст Руска создали электронный микроскоп, который впервые позволил исследовать нанообъекты. В 1968 году Альфред Чо и Джон Артур разработали теоретические основы нанотехнологии при обработке поверхностей. В 1974 году японский физик Норио Танигучи ввел слово «нанотехнологии», которым предложил называть малые устройства, размером один микрон и меньше. В 1981 году германские физики Герд Бинниг и Генрих Рорер создали микроскоп, способный различать атомы. В 1985 году американские физики Роберт Керл, Хэрольд Крото и Ричард Смэйли создали с помощью электронной микроскопии технологию, позволяющую точно измерять предметы диаметром нанометр, появились манипуляторы для работы с такими объектами. В 1989 году Дональд Эйглер, инженер фирмы IBM, выложил название своей фирмы атомами ксенона. В 1998 году появились первые наноустройства. Голландский физик Сеез Деккер создал транзистор на основе нанотехнологий.

В настоящее время наноматериалы используют для изготовления защитных и светопоглощающих покрытий, композиционных материалов, спортивного оборудования и инвентаря, военного снаряжения, транзисторов и диодов, топливных элементов, лекарств и медицинской аппаратуры, материалов для упаковки, косметики и одежды. В 2002 году на Кубке Дэвиса были впервые использованы теннисные мячи, созданные с использованием нанотехнологий. В общей сложности в США и на Западе сейчас применяют нанотехнологии при производстве около 100 групп потребительских товаров и свыше 1000 видов материалов различного назначения.

Нанокирпичики

Таковыми являются молекулы углерода, напоминающие футбольные мячи, – фуллерены C60 и углеродные трубки фуллерены. Эти структуры были открыты в 1985 году (Нобелевская премия по химии за 1996 год была присуждена первооткрывателям фуллеренов Роберту Керлу, Гарольду Крото и Ричарду Смалли). В 1991 году японским исследователем Сумио Иижима были получены углеродные нанотрубки. Диаметр таких трубок – 0,9 нм, длина – нескольких десятков микрон, поэтому они и получили название нанотрубок.

Как получают нанотрубки?

Это довольно сложная химическая технология, хотя в ее основе очень простое явление – вольтова дуга (плазма дугового разряда). При высокой температуре происходит образование углеродных веществ. Наиболее распространенным способом получения углеродных нанотрубок является термическое распыления графитовых электродов. Процесс синтеза осуществляется в камере, заполненной гелием под повышенным давлением. При горении плазмы происходит испарение анода, при этом на поверхности катода образуется осадок, в котором имеются нанотрубки углерода. Аналогично производят фуллерены. В настоящее время производство этих материалов выходит на сотни тонн в год.

На страницу:
2 из 3