Полная версия
Параллельные миры: Об устройстве мироздания, высших измерениях и будущем космоса
Сила как искривление пространства
Ньютон понимал пространство и время как огромную пустую арену, где события происходят в соответствии с его законами механики. Когда-то сцена была полна чудес и тайн, но, по существу, оставалась инертной и неподвижной, лишь пассивной свидетельницей ритуального танца природы. Однако Эйнштейн перевернул это представление. Для Эйнштейна сама сцена становится важной составляющей жизни. Во Вселенной Эйнштейна пространство и время уже не были статичной сценой, как предполагал (и предписывал) Ньютон, они приобрели динамичность, изгибались и извивались причудливым образом. Представьте, что сцену жизни заменил батут, на котором все актеры мягко проседают под собственным весом. При таком положении дел мы увидим, что сцена становится столь же важной, как и актеры.
Представьте, что на кровать положили шар для игры в боулинг и он мягко утопает в матрасе. Теперь подтолкните небольшой шарик по искривленной поверхности матраса. Шарик будет двигаться. Ньютонианец, увидев с большого расстояния шарик, огибающий большой шар, пришел бы к выводу, что существует некая таинственная сила, с которой шар для игры в боулинг воздействует на маленький шарик. Он сказал бы, что шар для боулинга мгновенно воздействует на маленький шарик, притягивая его к центру.
Для релятивиста, который наблюдает движение шарика с близкого расстояния, совершенно ясно, что никакой силы не существует вообще. Есть лишь искривление матраса, которое и заставляет шарик двигаться по кривой. Он говорит: «При чем тут притяжение? Есть лишь давление, которое оказывает матрас на маленький шарик». Теперь возьмем вместо шарика Землю, вместо большого шара – Солнце, а вместо матраса – космос, и мы поймем, что Земля движется вокруг Солнца не из-за гравитационного притяжения, а потому, что Солнце искажает космическое пространство вокруг Земли и тем создает давление, заставляющее Землю двигаться по окружности.
Таким образом, Эйнштейн пришел к выводу, что гравитация больше похожа на материю, нежели на невидимую силу, действующую мгновенно в пределах Вселенной. Если быстро встряхивать материю, то образовавшиеся волны побегут по ее поверхности с определенной скоростью. Это разрешает парадокс исчезнувшего Солнца. Если гравитация – побочный продукт искривления пространства-времени, то исчезновение Солнца можно сравнить (вернемся к матрасу) с резким подскоком с постели шара для игры в боулинг. Когда матрас резко возвращает себе первоначальную форму, по поверхности простыни бегут волны, двигающиеся с определенной скоростью. Таким образом, сведя гравитацию к искривлению пространства и времени, Эйнштейн смог примирить ее с теорией относительности.
Представьте себе муравья, пытающегося бежать по смятому листу бумаги. Он будет передвигаться, раскачиваясь, будто пьяный матрос, влево и вправо. Муравей горячо возразил бы, что он не пьян, утверждая, что его качает таинственная сила, дергая то влево, то вправо. Для муравья это ничем не заполненное пространство полно таинственных сил, мешающих ему идти прямо. Однако, глядя на муравья с близкого расстояния, мы видим, что никакая сила его не тянет. Его «толкают» складки мятого листа бумаги. Силы, воздействующие на муравья, – всего лишь иллюзия, вызванная искривлением пространства. Воздействие силы – на самом деле лишь «толчок», когда он перешагивает через складку бумаги. Другими словами, не гравитация притягивает, а пространство отталкивает.
В 1915 году Эйнштейну наконец удалось завершить то, что он назвал общей теорией относительности, и это стало фундаментом, на котором покоится вся космология. В этой удивительной картине мира гравитация выступает не как независимая сила, заполняющая Вселенную, а как видимый эффект искривления пространства-времени. Теория Эйнштейна была так всеобъемлюща, что подытожить ее ему пришлось в длиннющем уравнении. В этой блестящей новой теории степень искривления пространства и времени определялась количеством материи и энергии, содержащихся в них. Представьте, что в пруд бросили камень. По поверхности пруда пойдет рябь, вызванная падением камня. Чем больше камень, тем более неровной станет поверхность пруда. Похожим образом, чем больше звезда, тем сильнее искривление пространства-времени, окружающего звезду.
Рождение космологии
Эйнштейн попытался использовать подобный принцип для описания Вселенной как целостного образования. Его ожидало столкновение с парадоксом Бентли. В 1920-е годы большинство астрономов верило в то, что Вселенная однородна и статична. Поэтому Эйнштейн отталкивался от предположения, что Вселенная однородно заполнена пылью и звездами. В одной из моделей Вселенная сравнивается с большим воздушным шаром или мыльным пузырем. Мы живем на его поверхности. Звезды и галактики, которые мы видим вокруг себя, можно сравнить с точками, нарисованными на поверхности воздушного шарика.
К своему удивлению, всякий раз, когда Эйнштейн пытался решить собственные уравнения, он приходил к выводу, что Вселенная динамична. Ученый столкнулся с той самой проблемой, которую сформулировал Бентли более чем за два столетия до него. Поскольку гравитация всегда притягивает и никогда не отталкивает, ограниченное количество звезд должно взорваться в огненном катаклизме. Однако это противоречило господствующему в начале XX века мнению, гласившему, что Вселенная статична и однородна.
Несмотря на всю свою революционность, Эйнштейн не мог поверить, что Вселенная может двигаться. Подобно Ньютону и множеству остальных ученых, Эйнштейн верил в статичную Вселенную. Так, в 1917 году Эйнштейн был вынужден ввести в свои уравнения новое слагаемое, некую поправку – новую, антигравитационную силу, которая толкала звезды прочь друг от друга. Эйнштейн назвал ее космологической константой, и она выглядела гадким утенком, запоздалым дополнением к его теории. Эйнштейн без достаточных на то оснований, чтобы полностью нейтрализовать силы гравитации, ввел антигравитацию, создавая тем самым статичную Вселенную. Другими словами, Вселенная стала статичной просто по воле Эйнштейна: внутреннее сокращение Вселенной благодаря гравитации нейтрализовалось внешней силой темной энергии. (На протяжении 70 лет, вплоть до открытий последних лет, эта антигравитационная сила считалась в физике чем-то вроде сироты.)
В 1917 году нидерландский физик Виллем де Ситтер предложил еще одно решение для уравнений Эйнштейна, где вселенная была бесконечной и полностью лишенной всякой материи. По сути, вселенная состояла только из энергии, содержащейся в вакууме, – космологической константы. Этой чистой антигравитационной силы было достаточно, чтобы вызвать стремительное экспоненциальное расширение вселенной. Даже без всякой материи эта темная энергия могла создать расширяющуюся вселенную.
Теперь перед физиками встала дилемма. Во вселенной Эйнштейна существовала материя, но не было движения. Во вселенной де Ситтера было движение, но не существовало материи. Во вселенной Эйнштейна космологическая константа оказалась необходимой для нейтрализации гравитационного притяжения и создания статичной вселенной. Во вселенной де Ситтера одной космологической константы было достаточно для создания расширяющейся вселенной.
В конце концов в 1919 году, когда Европа, залечивая раны, пыталась выбраться из руин Первой мировой войны, по всему миру были разосланы команды ученых-астрономов для проверки новой теории Эйнштейна. Эйнштейн предположил, что искривление пространства-времени Солнцем будет достаточным для искривления звездного света, проходящего вблизи Солнца. Величину искривления звездного света можно было точно подсчитать, подобно тому как можно вычислить, насколько стекло искривляет свет. Но поскольку днем сияние Солнца скрывает все звезды, для проведения решающего эксперимента ученым пришлось ждать наступления солнечного затмения.
Группа, возглавляемая британским астрофизиком Артуром Эддингтоном, отправилась на остров Принсипи в Гвинейском заливе (у побережья Западной Африки), чтобы запечатлеть искривление света звезд вокруг Солнца во время будущего солнечного затмения. Другая команда под руководством Эндрю Кроммелина отправилась в деревню Собраль в северной Бразилии. Собранные ими данные свидетельствовали, что средняя величина отклонения звездного света равняется 1,79 с дуги, что вполне соотносилось с предсказанной Эйнштейном 1,74 с дуги (неточность объяснялась погрешностью измерений в ходе эксперимента). Иными словами, свет действительно искривлялся вблизи Солнца. Позднее Эддингтон заявил, что проверка теории Эйнштейна стала одним из величайших моментов его жизни.
6 ноября 1919 года на совместном заседании Королевского общества и Королевского астрономического общества в Лондоне нобелевский лауреат и президент Королевского общества Дж. Дж. Томпсон торжественно объявил, что это «одно из величайших достижений в истории человеческой мысли. Это открытие не отдаленного острова, а целого континента новых научных идей. Это величайшее открытие в области гравитации с тех пор, как Ньютон сформулировал свои законы»{25}.
(По легенде, позднее некий репортер спросил Эддингтона: «Ходят слухи, что во всем мире лишь трое понимают теорию Эйнштейна. Вы, должно быть, один из них». Эддингтон стоял, ни говоря ни слова, и репортер добавил: «Не скромничайте, Эддингтон». Эддингтон пожал плечами и ответил: «Я вовсе не скромничаю. Я просто задумался, кто же может быть третьим»{26}.)
На следующий день лондонская Times вышла с сенсационным заголовком: «Научная революция – Новая теория Вселенной – Идеи Ньютона низвергнуты». Этот заголовок определил момент, когда Эйнштейн стал фигурой мирового значения, посланцем звезд.
Заявление было настолько ошеломляющим, а отход Эйнштейна от идей Ньютона настолько радикальным, что в обществе возникла негативная реакция – даже выдающиеся физики и астрономы осудили эту теорию. В Колумбийском университете Чарльз Лейн Пуэр, преподаватель астрономии, возглавил кампанию по критике теории относительности. Он объявил: «Я чувствую себя так, будто прогулялся с Алисой по Стране чудес и побывал на чаепитии у Безумного Шляпника»{27}.
Причина, по которой теория относительности противоречит здравому смыслу, заключается не в том, что она неверна, а в том, что наш здравый смысл не в состоянии представить реальность. Мы – странное произведение природы. Мы заселяем необычный объект недвижимости, где температура, плотность и скорости довольно умеренны. Однако в «настоящей Вселенной» температуры могут быть невероятно высокими в центре звезды или чрезвычайно низкими в открытом космосе, а субатомные частицы проносятся в космическом пространстве со скоростью, близкой к скорости света. Другими словами, наш здравый смысл сформировался в крайне необычной темной части Вселенной, на Земле, а потому неудивительно, что наш рассудок не может постичь истинные размеры Вселенной. Проблема не в теории относительности, а в нашем убеждении, что наш рассудок в состоянии объяснить реальность.
Будущее Вселенной
Хотя теория Эйнштейна успешно объясняла такие астрономические явления, как искривление звездного света вокруг Солнца и легкое смещение орбиты Меркурия, все же космологические прогнозы были не совсем ясны. Положение вещей в значительной степени прояснил русский физик Александр Фридман, нашедший самые общие и реалистичные решения уравнений Эйнштейна. И в наши дни эти решения изучаются в курсе общей теории относительности. (Он получил их в 1922 году, умер через три года, и о его работе вспомнили лишь спустя много лет.)
Теория Эйнштейна в общем случае описывается рядом чрезвычайно сложных уравнений, для решения которых зачастую необходим компьютер. Однако Фридман предположил, что Вселенная динамична, а затем привел два упрощающих допущения (называемые космологическим принципом): Вселенная изотропна (она выглядит одинаково вне зависимости от того, в каком направлении мы смотрим из данной точки) и гомогенна (она однородна, в какой бы точке Вселенной мы ни находились).
Если применить эти упрощающие допущения, уравнения обретают решения. (По сути, и решение Эйнштейна, и решение де Ситтера представляли собой лишь частные случаи более общего решения Фридмана.) Примечательно, что его решения зависели лишь от трех параметров:
1. H, определяющая темп расширения Вселенной (сегодня его называют постоянной Хаббла в честь астронома, который действительно измерил расширение Вселенной).
2. Омега (Ω), определяющая среднюю плотность материи во Вселенной.
3. Лямбда (Λ) – энергия пустого космоса, или темная энергия.
Многие космологи всю свою профессиональную жизнь провели в попытках определить точное значение этих трех величин. Неуловимое взаимодействие между этими тремя постоянными определяет будущее развитие нашей Вселенной. Например, поскольку гравитация выражается силами притяжения, то плотность Вселенной (Ω) действует в качестве некоего тормоза, замедляющего расширение Вселенной. Представьте, что вы подбросили камень. В обычных условиях гравитация достаточно велика, чтобы изменить движение камня, который падает обратно на Землю. Однако если подбросить камень с достаточной силой, то он преодолеет действие гравитации и навсегда вырвется в открытый космос. Подобно камню, Вселенная первоначально расширилась в результате Большого взрыва, но материя (или Ω) действует на расширение Вселенной как тормоз, точно так же как земная гравитация воздействует в качестве тормоза для подброшенного камня.
Теперь допустим, что Λ, энергия пустого космоса, равна нулю. Пусть Ω – плотность Вселенной, разделенная на критическую плотность. (Критическая плотность Вселенной равна приблизительно 5 атомам водорода на кубический метр. Она в среднем соответствует одному атому водорода в объеме 25 баскетбольных мячей – настолько пустынна Вселенная.)
Ученые считают, что если Ω < 1, то во Вселенной недостаточно материи, чтобы обратить вспять первоначальное расширение, вызванное Большим взрывом. (Подобно примеру с подброшенным камнем: если масса Земли недостаточно велика, то камень преодолеет земную гравитацию и улетит прочь.) В результате Вселенная будет расширяться вечно, погружаясь в леденящий холод, – температуры ее приблизятся к абсолютному нулю. (Это принцип работы холодильника или кондиционера{28}. Расширяясь, газ охлаждается. Например, газ, циркулирующий в трубке вашего кондиционера, расширяется, охлаждая трубку и вашу комнату.)
Если Ω >1, то во Вселенной достаточно материи и гравитации, чтобы в конце концов изменить направление космического расширения. В результате расширение Вселенной прекратится, а затем она начнет сжиматься. (Так же как в случае с подброшенным камнем: если масса Земли достаточно велика, то камень в конце концов достигнет наивысшей точки, а затем снова упадет на Землю.) Когда звезды и галактики устремятся навстречу друг другу, температуры начнут расти. (Каждый, кто хоть раз накачивал велосипедную шину, знает, что при сжатии газ нагревается. Механическая работа накачивания воздуха преобразует энергию гравитации в тепловую.) В конце концов температуры станут настолько высокими, что всякая жизнь исчезнет, а во Вселенной начнется процесс Большого сжатия. (Астроном Кен Кросвелл называет этот процесс «от создания к сжиганию».)
Третий вариант заключается в том, что Ω = 1. Иными словами, плотность Вселенной равна критической плотности. В таком случае Вселенная балансирует на грани между двумя крайностями, но при этом она будет продолжать расширяться вечно. (Как мы увидим, этот сценарий развития вписывается в инфляционную картину.)
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.
Сноски
1
Еще более подробную картину получил спутник Planck Европейского космического агентства. – Прим. науч. ред.
2
К сегодняшнему дню наиболее полное сканирование произвел спутник Planck Европейского космического агентства. – Прим. науч. ред.
3
Planck, запущенный в 2009 году, выполнил свою миссию и, что касается анизотропии реликтового излучения, представил окончательные результаты в начале 2015 г. – Прим. науч. ред.
4
По результатам Planck, 5 %. – Прим. науч. ред.
5
По результатам Planck, 27 %. – Прим. науч. ред.
6
По результатам Planck, 68 %. – Прим. науч. ред.
7
Первую (и до сих пор) реалистичную инфляционную модель предложил Алексей Старобинский из Института им. Ландау. – Прим. науч. ред.
8
Хотя общепринятый перевод этого высказывания Эйнштейна – «ничто не может перемещаться быстрее света», в данном контексте адекватен именно дословный перевод, поскольку автор таким образом обыгрывает это высказывание, приравнивая «ничто» к пустому пространству. – Прим. ред.
9
Тут главное слово «теоретических», поскольку все очень модельно-зависимое и никаких наблюдательных данных в поддержку гипотезы Мультивселенной пока не существует. – Прим. науч. ред.
10
В классическом переводе Т. Щепкиной-Куперник эти слова звучат следующим образом: «Весь мир – театр. В нем женщины, мужчины – все актеры. У них свои есть выходы, уходы», но, поскольку слово stage означает не только «театр», но и «сцену», а автор на протяжении книги проводит аналогию Вселенной именно со сценой, мы дали такой перевод. – Прим. ред.
11
Пер. С. Маршака. – Прим. ред.
Комментарии
1
www.space.com, Feb. 11, 2003.
2
Croswell, p. 181.
3
Croswell, p. 173.
4
Britt, Robert. www.space.com, Feb. 11, 2003.
5
www.space.com, Jan. 15, 2002.
6
New York Times, Feb. 12, 2003, p. A34.
7
Lemonick, p. 53.
8
The New York Times, Oct. 29, 2002, p. D4.
9
Rees, p. 3.
10
The New York Times, Feb. 18, 2003, p. F1.
11
Rothman, Tony. Discover magazine, July, 1987, p. 87.
12
Hawking, p. 88.
13
Bell, p. 105.
14
Silk, p. 9.
15
Croswell, p. 8.
16
Croswell, p. 6.
17
Smoot, p. 28. Перевод К. Д. Бальмонта.
18
Croswell, p. 10.
19
The New York Times, March 10, 2004, p. A1.
20
The New York Times, March 10, 2004, p. A1.
21
Pais2, p. 41.
22
Schilpp, p. 53.
23
Сжатие объектов, движущихся с околосветовой скоростью, в действительности было открыто Хендриком Лоренцом и Джорджем Френсисом Фитцджеральдом незадолго до Эйнштейна, но они не поняли этого эффекта. Они пытались анализировать этот эффект в рамках исключительно ньютонианской системы, предположив, что это сжатие представляет собой электромеханическое сжатие атомов, создающееся вследствие прохождения сквозь «эфирный ветер». Сила идей, предложенных Эйнштейном, состояла в том, что он не только получил всю специальную теорию относительности из одного принципа (постоянства скорости света), он также интерпретировал его как универсальный природный принцип, противоречащий теории Ньютона. Таким образом, эти искажения являлись свойствами, присущими пространству-времени, а не электромеханическими искажениями вещества. Великий французский математик Анри Пуанкаре, вероятно, подошел ближе всех к выводу тех же уравнений, что получил Эйнштейн. Но лишь у одного Эйнштейна были полный набор уравнений и глубокое понимание физической подоплеки проблемы.
24
Pais2, p. 239.
25
Folsing, p. 444.
26
Parker, p. 126.
27
Brian, p. 102
28
Когда газ расширяется, он охлаждается. Для примера: в вашем холодильнике внешнее и внутреннее пространство камеры соединяется трубкой. Когда газ попадает внутрь холодильника, он расширяется, охлаждая трубку и продукты. Когда он уходит из внутренней части холодильника, трубка сокращается и нагревается. Есть также механический насос, который закачивает газ через трубку. Таким образом, задняя стенка холодильника греется, а внутреннее пространство охлаждается. В звездах все происходит в обратном порядке. Когда сила гравитации сжимает звезду, та разогревается до достижения температур, при которых начинается синтез.