Полная версия
Альгология и микология. Практикум
Водоросли, прикрепившиеся к стеблям и листьям высших водных растений и другой поверхности, возвышающейся над дном водоема, относят к перифитону.
Наземные, или аэрофильные, водоросли образуют различно окрашенные налеты и пленки на деревьях, скалах, сырой земле, крышах и стенах домов, на заборах и т.д. Особенно много наземных водорослей в районах с теплым и влажным климатом.
Для перенесения аэрофитами неблагоприятных условий жизни на суше (резкая смена температуры днем и ночью, летом и зимой, кратковременное увлажнение и т.д.) строение их клеток отличается рядом особенностей: они имеют слоистые, сильно утолщенные стенки, слизистые обертки, чехлы, удерживающие воду, накапливающиеся в больших количествах масла и более вязкую цитоплазму.
Общее количество наземных водорослей составляет несколько сотен видов, принадлежащих в основном к трем отделам: синезеленым, зеленым и диатомовым.
На коре деревьев, например, растут обычно зеленые водоросли (плеврококк, трентеполия, хлорококк, хлорелла и др.), а на поверхности постоянно увлажненных каменных глыб или стен наряду с некоторыми зелеными (космариум, цилиндроцистис) и диатомовыми (пиннулярия) изобилуют и синезеленые (в частности, глеокапса, стигонема, носток и др.).
Почвенные водоросли обитают на поверхности почвы или в ее самых верхних горизонтах. Некоторые представители проникают на глубину 1 – 2 м и более. Предполагается, что глубоко в почве они переходят на сапротрофное питание. При полном же выключении видимой части спектра для фотосинтеза они способны использовать невидимую лучистую энергию.
Известно около 2000 видов почвенных водорослей, в Беларуси более 210 видов, разновидностей и форм преимущественно синезеленых и диатомовых и в меньшей степени зеленых, желтозеленых и эвгленовых.
Особенности строения и жизнедеятельности водорослей в связи с преимущественно водным образом жизни. Для водорослей, обитающих в океанах, морях и пресноводных водоемах, вода не только необходимый экологический фактор, но и среда обитания, для которой характерны: ослабление освещенности и изменение спектрального состава света с глубиной и, соответственно, снижение доли фотосинтетически активной радиации (ФАР), а также продолжительности светового дня; меньшее количество воздуха, растворенного в воде, иной его состав (содержание кислорода, например в воде, на единицу объема в 30-35 раз меньше, чем в воздухе) и большая, чем в атмосфере, его изменчивость, возможность накапливания в воде CO2 (0,2 – 0,5 мл/л), N2, а в анаэробных условиях – NH4, H2S; отсутствие резких перепадов температуры в течение года и суток; широкий диапазон солености – от тысячных долей грамма до 350 г/л и больше (основными элементами минерального питания водорослей являются азот, фосфор, кремний, железо, марганец); движение воды (гидродинамический фактор), особенно в прибрежной (приливно-отливной) зоне, где водоросли подвергаются воздействию таких мощных факторов, как прибой и удары волн, отливы и приливы и др.
Чтобы обеспечить свое существование в жестких условиях водной среды обитания, водоросли обладают рядом морфологических и физиологических особенностей.
1. Клетки многих водорослей имеют оболочку; внутренний слой которой целлюлозный, а наружный – пектиновый. Оболочка удачно сочетает защитную и опорную функции с возможностью ростовых процессов и проницаемостью. Оболочки значительно утолщаются при дефиците влаги, иногда интенсивно пропитываются (инкрустируются) карбонатом кальция (у харовых), покрываются органическими соединениями (например, кутином), секретируемыми протопластом клетки. Кутин помимо опорной выполняет и защитную функцию, поскольку задерживает губительные ультрафиолетовые лучи и предохраняет клетки от излишней потери воды в период отлива. Пектиновый слой защищает клетку от вредного влияния различных кислот и других столь же сильных реагентов.
2. Слоевище морских бентосных водорослей прочно прикреплено к грунту ризоидами или базальным диском, поэтому водоросли сравнительно редко отрываются от субстрата в случаях прибоев и ударов волн.
3. Таллом водоросли, как правило, не сплошной, а рассеченный. Он дихотомически ветвится в одной плоскости, что позволяет свести к минимуму сопротивление толщи воды. К тому же он прочный и упругий.
4. У некоторых водорослей имеются специальные воздушные пузыри, которые удерживают слоевище у поверхности воды, где есть возможность максимального улавливания света для фотосинтеза.
5. Водорослям приходится адаптироваться не только к недостатку света на разных глубинах водоема, но и к изменению его спектрального состава путем генетически обусловленной выработки дополнительных фотосинтезирующих пигментов. В мелководных зонах, где растениям еще доступны красные лучи, в наибольшей степени поглощаемые хлорофиллом, преобладают зеленые водоросли. В более глубоких зонах, куда проникает синий свет, встречаются бурые водоросли, содержащие кроме хлорофилла бурый пигмент фукоксантин. Еще глубже (до 268 м) обитают красные водоросли, имеющие пигментные группы фикобилинов, – фикоэритрин, фикоцианин и аллофикоцианин, хорошо приспособленные к поглощению зеленых, фиолетовых и синих лучей.
6. Глубоководные виды водорослей имеют более крупные хроматофоры с высоким содержанием пигментов, низкую точку компенсации фотосинтеза (30— 100 люкс), теневой характер световой кривой фотосинтеза с низким плато насыщения.
7. Таллом многих водорослей выделяет много слизи, которая заполняет их внутренние полости и выделяется наружу. Слизь помогает лучше удерживать воду и препятствует обезвоживанию.
8. Осмотическое давление в клетках водоросли намного выше, чем в морской воде, поэтому осмотических потерь воды не наблюдается.
9. Выход спор и гамет у морских водорослей совпадает с приливом. В этот период из репродуктивных органов освобождаются споры, мужские и женские гаметы, которые, как правило, обладают таксисами, определяющими направления их движения в зависимости от света, температуры, химических веществ, содержащихся в воде, и др. У спор, лишенных жгутиков, наблюдается амебоидное движение. Развитие зиготы происходит сразу же после оплодотворения, чтобы не оказаться унесенной в океан.
Значение водорослей. Водоросли играют существенную роль в жизни биосферы и хозяйственной деятельности человека. Благодаря способности к фотосинтезу, в водоемах они являются основными продуцентами громадного количества органических веществ, которые широко используются животными и человеком.
Поглощая из воды углекислый газ, водоросли насыщают ее кислородом, необходимым для всех живых организмов. Велика их роль и в биологическом круговороте веществ, в циклическом характере которого решена проблема длительного существования и развития жизни на Земле.
В историческом и геологическом прошлом водоросли принимали участие в образовании горных и меловых пород, известняков, рифов, особых разновидностей угля, ряда горючих сланцев и явились родоначальниками растений, заселивших сушу.
Поскольку в морских водорослях установлено наличие витаминов А, В1, В2, В12, С и D, йода, брома, мышьяка и т.д., они чрезвычайно широко используются в различных отраслях хозяйственной деятельности человека, в том числе в пищевой, фармацевтической и парфюмерной промышленности. Их возделывают в установках под открытым небом с целью получения биомассы как дополнительного источника белка, витаминов и биостимуляторов для животноводства.
Многие водоросли используются в пищу человека. В частности, на Сандвичевых островах из 115 имеющихся видов местное население употребляет около 60. Наибольшей известностью как лечебное и профилактическое средство пользуется морская капуста (некоторые виды ламинарии), применяемая против желудочно-кишечных расстройств, склероза, зоба, рахита и ряда других заболеваний.
Водоросли служат сырьем для получения ценных органических веществ: спиртов, лаков, аммиака, органических кислот, альгина, агар-агара. Агар-агар широко применяется в лабораторных биологических работах при создании твердых сред, на которых с добавлением определенных питательных веществ культивируют грибы, водоросли и бактерии. В больших количествах его используют в пищевой промышленности при изготовлении мармелада, пастилы, мороженого и других изделий.
В сельском хозяйстве водоросли применяют как органические удобрения под некоторые культуры, а также в качестве кормовой добавки в пищевом рационе домашних животных.
Способность хлореллы ассимилировать до 10 – 18% световой энергии (против 1 – 2% у высших растений) позволяет использовать эти микроводоросли для регенерации воздуха в замкнутых биологических системах жизнеобеспечения человека при длительных космических полетах и подводном плавании.
В последние годы в нашей республике и за рубежом культивируются водоросли на коммунально-бытовых и промышленных сточных водах с целью их биологической очистки и дальнейшего использования биомассы водорослей для получения метана или применения в промышленности и сельскохозяйственном производстве.
Некоторые водоросли (например, хлорелла) способны накапливать радионуклиды, что используется для дополнительной очистки слабоактивных сточных вод атомных электростанций.
Вместе с тем сильное размножение водорослей может наносить значительный ущерб хозяйственной деятельности человека. Наряду с другими организмами они участвуют в обрастании морских судов, ухудшая тем самым их эксплуатационные качества. Некоторые водоросли, особенно синезеленые, вызывают «цветение» воды, придавая ей неприятный вкус и запах.
1.2. Методы сбора, хранения и изучения водорослей
Водоросли можно собирать с ранней весны до поздней осени, а наземные – на местах, не покрытых снегом, в течение всего года.
Для их сбора необходимо брать банки с широким горлом и хорошо пригнанными пробками, сумку для них, нож, острый скребок, планктонную сетку, пузырек с формалином, коробки или полиэтиленовые мешки для сбора наземных водорослей, писчую бумагу для этикеток, блокнот для записей, карандаш.
Методы сбора и изучения водорослей определяются прежде всего эколого-морфологическими особенностями представителей различных отделов и экологических группировок. Рассмотрим основные методы сбора и изучения водорослей, которые даны по книге «Пресноводные водоросли Украинской ССР» (А.В. Топачевский, М.П. Масюк, 1984).
Сбор фитопланктона. Выбор метода отбора проб фитопланктона зависит от типа водоема, степени развития водорослей, задач исследования, имеющихся в наличии приборов, оборудования и т.п. С целью изучения видового состава фитопланктона при интенсивном развитии последнего воду достаточно зачерпнуть из водоема, а при слабом – применяются различные методы предварительного концентрирования микроорганизмов, обитающих в толще воды. Одним из таких методов является фильтрование воды через планктонные сети (описание планктонной сети и других устройств и приборов для сбора водорослей (А.В. Топачевский, М.П. Масюк, 1984)).
При сборе планктона поверхностных слоев водоема планктонную сеть опускают в воду так, чтобы верхнее отверстие сети находилось на расстоянии 5 – 10 см над поверхностью воды. Сосудом определенного объема черпают воду из поверхностного слоя (до 15 – 20 см глубины) и выливают ее в сеть, отфильтровывая таким образом 50 – 100 л воды. На крупных водоемах планктонные пробы отбирают с лодки: планктонную сеть тянут на тонкой веревке за движущейся лодкой в течение 5 – 10 мин. Для вертикальных сборов планктона применяют сети особой конструкции. На небольших водоемах планктонные пробы можно собирать с берега, осторожно черпая воду сосудом впереди себя и фильтруя ее через сеть или забрасывая сеть на тонкой веревке в воду и осторожно вытягивая ее. Этот способ дает возможность собирать и нейстонные водоросли (эпинейстон, гипонейстон). Сконцентрированную таким образом пробу планктона, находящуюся в стаканчике планктонной сети, сливают через выводную трубку в заранее приготовленную чистую банку. Сетяные пробы планктона можно изучать в живом и фиксированном состоянии.
Для количественного учета фитопланктона объем проб производится специальными приборами – батометрами — разнообразной конструкции.
Широкое применение в практике получил батометр системы Рутнера. Его основная часть – цилиндр, изготовленный из металла или органического стекла, вместимостью от 1 до 5 л. Прибор снабжен верхней и нижней крышками, плотно закрывающими цилиндр. Под воду батометр опускают с открытыми крышками. При достижении необходимой глубины в результате сильного встряхивания веревки крышки закрывают отверстия цилиндра, который в закрытом виде извлекают на поверхность. Заключенную в цилиндре воду через боковой патрубок, снабженный краном, сливают в приготовленный сосуд. При изучении фитопланктона поверхностных слоев воды пробы отбирают без помощи батометра путем зачерпывания воды в сосуд определенного объема. В водоемах с бедным фитопланктоном желательно отбирать пробы объемом не менее 1 л параллельно с сетяными сборами, позволяющими улавливать малочисленные, сравнительно крупные объекты. В водоемах с богатым фитопланктоном объем количественной пробы можно уменьшить до 0,5 и даже до 0,25 л (например, при «цветении» воды).
Сгущение количественных проб фитопланктона можно проводить двумя методами, дающими примерно одинаковые результаты, – осадочным и фильтрационным.
Сгущение проб осадочным методом проводят после их предварительной фиксации и отстаивания в темном месте в течение 15 – 20 дней. После этого средний слой воды медленно и осторожно отсасывают с помощью стеклянной трубки, один конец которой затянут мельничным ситом № 77 в несколько слоев, а второй соединен с резиновым шлангом. Сгущенную пробу взбалтывают, измеряют объем и переносят в сосуд меньшего размера.
При сгущении проб фильтрационным методом используют «предварительные» или бактериальные фильтры.
Сбор фитобентоса. Для изучения видового состава фитобентоса на поверхности водоема достаточно извлечь некоторое количество донного грунта и отложений на нем. На мелководьях (до 0,5 – 1,0 м глубины) это достигается с помощью опущенной на дно пробирки или сифона – резинового шланга со стеклянными трубками на концах, в который засасывают наилок. На глубинах качественные пробы отбирают с помощью ведерка или стакана, прикрепленного к палке, а также различными грабельками, «кошками», драгами, дночерпателями, илососами и т.п.
Сбор перифитона. С целью изучения видового состава перифитона налет на поверхности разнообразных подводных предметов (галька, щебень, камни, стебли и листья высших растений, раковины моллюсков, деревянные и бетонированные части гидротехнических сооружений и др.) снимают с помощью обычного ножа или специальных скребков. Однако при этом гибнут многие интересные организмы; часть их уносится токами воды, разрушаются органы прикрепления водорослей к субстрату, нарушается картина взаимного размещения компонентов биоценоза. Поэтому водоросли лучше собирать вместе с субстратом, который полностью или частично осторожно извлекают на поверхность воды так, чтобы течение не смыло с него водоросли. Извлеченный субстрат (или его фрагмент) вместе с водорослями помещают в приготовленный для пробы сосуд и заливают лишь небольшим количеством воды из этого же водоема с целью дальнейшего изучения собранного материала в живом состоянии либо 4%-м раствором формальдегида.
Наземные, или воздушные водоросли собирают по возможности вместе с субстратом в стерильные бумажные пакеты или в стеклянные сосуды с 4%-м раствором формальдегида.
Методы сбора и изучения почвенных водорослей подробно изложены в специальной литературе (Голлербах, Штина, 1969).
Этикетирование и фиксация проб. Ведение полевого дневника.
Для изучения водорослей в живом и фиксированном состоянии собранный материал делят на две части. Живой материал помещают в стерильные стеклянные сосуды (пробирки, колбы, баночки), закрытые ватными пробками, причем не заполняя их доверху, или в стерильные бумажные пакеты. Чтобы лучше сохранить водоросли в живом состоянии в экспедиционных условиях, водные пробы упаковывают во влажную оберточную бумагу и помещают в ящики. Пробы должны периодически распаковываться и выставляться на рассеянный свет для поддержания фотосинтетических процессов и обогащения среды кислородом.
Материал, подлежащий фиксации, помещают в чисто вымытую и высушенную стеклянную посуду (пробирки, бутылки, баночки), плотно закрытую корковыми или резиновыми пробками. Водные пробы фиксируют 40%-м формальдегидом, приливая его в количестве 0,1 от объема собранной пробы. Водоросли, находящиеся на твердом субстрате (бумажные фильтры, галька, пустые раковины моллюсков и т.д.), заливают 4%-м раствором формальдегида. Хорошую сохранность водорослей и их окраски обеспечивает также раствор формальдегида и хромовых квасцов (5 мл 4%-го формальдегида и 10 г K2SO4 · Cr2(SO4)3 · 24 Н2O в 500 мл воды). В полевых условиях можно также использовать раствор йода с иодидом калия. Раствор готовится следующим образом: 10 г KI растворяют в 100 мл воды, добавляют 3 г кристаллического иода и 100 мл воды, встряхивают до полного растворения кристаллов, хранят в темной склянке в течение нескольких месяцев. Его добавляют к пробе в соотношении 1:5. Герметически закупоренные фиксированные пробы можно хранить в темном прохладном месте в течение длительного времени.
Собранные пробы тщательно этикетируют. На этикетках, заполняемых простым карандашом, указывают номер пробы, время и место сбора, орудие сбора и фамилию сборщика. Эти же данные фиксируют и в полевом дневнике, в который, кроме того, заносят результаты измерений pH, температуры воды и воздуха, схематический рисунок, подробное описание исследуемого водоема, развивающейся в нем высшей водной растительности и другие наблюдения.
Качественное изучение собранного материала. Материал предварительно просматривают под микроскопом в живом состоянии в день сбора, чтобы отметить качественное состояние водорослей до наступления изменений, вызванных хранением живого материала или фиксацией проб (образование репродуктивных клеток, колоний, потеря жгутиков и подвижности и т.д.). В дальнейшем его изучают параллельно в живом и фиксированном состоянии.
Работа с живым материалом является необходимым условием успешного изучения преобладающего большинства водорослей, изменяющих форму тела, форму и окраску хроматофоров, теряющих жгутики, подвижность или даже полностью разрушающихся при фиксации. Чтобы сохранить собранный материал живым, его следует оберегать от перегрева, загрязнения фиксаторами, а изучение проводить как можно быстрее.
Водоросли в живом состоянии в зависимости от размеров и других особенностей изучают с помощью бинокулярной стереоскопической лупы (МБС-1) или световых микроскопов.
Для микроскопического изучения водорослей готовят препараты: на предметное стекло наносят каплю исследуемой жидкости и накрывают ее покровным стеклом. Если водоросли обитают вне воды, их помещают в каплю водопроводной воды или оводненного глицерина. Следует помнить, что при длительном изучении препарата жидкость под покровным стеклом постепенно высыхает и время от времени ее необходимо добавлять. Для уменьшения испарения по краям покровного стекла наносят тонкий слой парафина или лак для ногтей.
При необходимости длительных наблюдений над одним и тем же объектом хороший результат дает метод висячей кати. На чистое покровное стекло наносят маленькую каплю исследуемой жидкости, после чего покровное стекло, края которого покрыты парафином, парафиновым маслом или вазелином, накладывают каплей вниз на специальное предметное стекло с лункой посередине так, чтобы капля не касалась дна лунки. Такой препарат можно изучать в течение нескольких месяцев, сохраняя его в перерывах между работой во влажной камере.
При изучении водорослей, имеющих монадную структуру, серьезной помехой служит их подвижность. Однако при подсыхании препарата движение постепенно замедляется и приостанавливается. Замедлению движения способствует также осторожное нагревание препарата или добавление вишневого клея. Подвижные водоросли рекомендуется фиксировать парами оксида осмия (при этом хорошо сохраняются жгутики), кристаллического иода (фиксация парами иода позволяет не только сохранить жгутики, но и окрасить крахмал, если он есть, в синий цвет, что имеет диагностическое значение), 4%-го формальдегида, слабым раствором хлоралгидрата или хлороформа. Длительность экспозиции над парами фиксаторов устанавливают экспериментально, в зависимости от специфики объекта. Наиболее удобны для изучения слабофиксированные препараты, в которых часть водорослей потеряла подвижность, а другие продолжают медленно двигаться. Препараты следует изучать немедленно после фиксации, так как в течение короткого периода времени водоросли деформируются.
При изучении внутриклеточных структур, особенно у мелких жгутиковых, применяют окрашивание с помощью слабых растворов (0,005 – 0,0001%) нейтрального красного, метиленового голубого, нейтрального голубого, трипанового красного, бриллиант-крезилового синего, конго красного, зелени Януса, позволяющих более четко выявить клеточную оболочку, папиллы, слизь, вакуоли, митохондрии, аппарат Гольджи и другие органеллы.
Многие красители дают хороший результат лишь после применения специальных методов фиксации (при изучении фиксированных формальдегидом проб успешное применение красителей возможно только после тщательного отмывания исследуемого материала дистиллированной водой). Самый лучший фиксатор для цитологического исследования водорослей, в том числе изучения их ультраструктуры, – 1 – 2%-й раствор оксида осмия (раствор не подлежит длительному хранению). Водоросли, не имеющие настоящих клеточных оболочек, хорошо и быстро фиксируются метанолом. Раствор Люголя (1 г йодида калия и 1 г кристаллического йода в 100 мл воды) не только хорошо фиксирует водоросли, но и одновременно окрашивает крахмал в синий цвет.
Для изучения ядер успешно используют спиртово-уксусный фиксатор Кларка (три части 96%-го этилового спирта и одна часть ледяной уксусной кислоты) или жидкость Корнуа (шесть частей 96%-го этилового спирта, три части хлороформа и одна часть ледяной уксусной кислоты). Водоросли выдерживают в свежеприготовленном растворе фиксатора в течение 1 – 3 ч, затем промывают 96%-м этиловым спиртом (2 мин) и водой (10 мин). Следует подчеркнуть, что при цитологическом изучении водорослей в большинстве случаев в зависимости от специфики объектов экспериментальным путем подбирают наиболее эффективные фиксаторы, красители и время экспозиции. Применяются и другие методы окраски ядер.
Жгутики изучают в световом микроскопе с помощью окраски по Лефлеру. Для этого материал фиксируют оксидом осмия, на короткое время погружая в абсолютный спирт, и оставляют высохнуть. Затем добавляют несколько капель красителя (смесь 100 мл 20%-го водного раствора танина, 50 мл насыщенного водного раствора FeSO4 и 10 мл насыщенного спиртового раствора основного фуксина) и нагревают над пламенем горелки, не доводя до кипения, до появления пара. После ополаскивания дистиллированной водой препарат в течение 10 мин докрашивают карболфуксином (100 мл 5%-го водного раствора свежеперегнанного фенола и 10 мл насыщенного спиртового раствора фуксина основного; смесь отстаивают в течение 48 ч, фильтруют и хранят в течение длительного времени), затем снова ополаскивают дистиллированной водой, дают высохнуть и заливают канадским бальзамом. Этим методом можно установить наличие или отсутствие на жгутиках волосков. Наблюдения за длиной жгутиков, характером их движения, местом прикрепления ведутся на живом материале методом фазового контраста.
Хроматофоры следует изучать на живом материале, так как при фиксации они деформируются. Точно так же трудно сохранить и стигму. Белковое тело пиреноида после предварительной фиксации хорошо окрашивается по Альтману. Краситель состоит из одной части насыщенного раствора пикриновой кислоты в абсолютном этиловом спирте и семи частей насыщенного водного раствора фуксина. Окрашивание длится не менее 2 ч.
Окраску белковых тел пиреноидов можно осуществить и без предварительной фиксации материала с помощью уксусного азокармина G. Для этого к 4 мл ледяной уксусной кислоты добавляют 5 5 мл воды и 5 г азокармина G. Полученную смесь кипятят около часа, используя обратный холодильник, охлаждают, фильтруют и хранят в сосуде из темного стекла. Раствор красителя добавляют в каплю воды с водорослями на предметном стекле, накрывают покровным стеклом и наблюдают под микроскопом. Белковое тело пиреноида окрашивается в интенсивный красный цвет, остальная часть клетки – в светло-розовый.
Крахмал окрашивается в синий цвет под воздействием любых реактивов, содержащих йод. Наиболее чувствительный из них – хлорал йода (мелкие кристаллики йода в растворе хлоралгидрата) – позволяет обнаружить наиболее мелкие зернышки крахмала и отличить крахмал вокруг пиреноида от строматического. Присутствие парамилона можно обнаружить, растворив его 4%-м КОН. Наличие хризоламинарина выявляется лишь с помощью сложных микрохимических реакций. Масло и жиры окрашиваются Суданом (0,1 г Судана в 20 мл абсолютного этилового спирта) в красный цвет или оксидом осмия – в черный.