bannerbanner
Катастрофы в природе: землетрясения
Катастрофы в природе: землетрясения

Полная версия

Катастрофы в природе: землетрясения

Настройки чтения
Размер шрифта
Высота строк
Поля
На страницу:
3 из 4

Из-за неоднородности недр на сейсмограмме отражается широкий спектр сейсмических волн разного типа. Помимо P и S волн к основным относятся т.н. поверхностные волны Рэлея и Лява (R и L). Они названы по именам ученых разработавших математическую теорию их распространения.

При прохождении волн Рэлея частицы среды описывают вертикальные эллипсы вдоль направления распространения. В поверхностных волнах Лява частицы среды колеблются перпендикулярно направлению своего распространения. Эти типы волн распространяются по земной поверхности подобно волнам в водоемах со скоростью 3,2 – 4,4 км/с.



Из-за того, что Р-волны вблизи от очага землетрясения имеют большую скорость, чем S-волны они регистрируются первыми, отсюда их наименование «Primary». Поперечные S-волны распространяются с меньшей скоростью и приходят следом за P-волнами. Соответственно их назвали вторичными волнами «Secondary». Чем дальше от очага землетрясения расположена сейсмическая станция, тем больший интервал времени между моментами вступления на сейсмограмме P и S волн. Это свойство используется для определения дистанции от станции до очага землетрясения.

На больших удалениях от источника волновая картина значительно меняется из-за неоднородности земных недр. Для её расшифровки в этом случае используются специальные годографы времён пробега типов волн. Один из первых широко использовавшихся годографов получил название по имени его создателей англичанина Сэра Гарольда Джеффриса и австралийца Кита Эдварда Буллена. Буллен также построил одну из первых сейсмических моделей внутреннего строения Земли.



Сейсмические волны проходят внутри земного шара в местах недоступных для прямых измерений. Все, что они встречают на пути, формирует их структуру, и отражается на сейсмограммах. Их анализ позволяет получить представление о том, как распространялись сейсмические волны и изучать строение земных недр.

Интересен сам по себе факт открытия сейсмических волн. Теоретически существование в твердых телах объёмных Р и S волн предсказано в 1829 году Пуассоном, но до 1900 года сейсмологам не удавалось их однозначно распознавать на сейсмограммах. Многие исследователи принимали поверхностные волны Релея за вступления S-волн и приходили к ошибочным результатам.

Проблема была решена в 1899 году Ричардом Диксоном Олдхэмом сумевшего в записях Ассамского землетрясения 1897 года выделить истинные вступления S-волн. Это позволило уже к 1914 году составить общую картину строения планеты и её скоростного разреза. Выдающийся вклад в решение этой задачи внесли такие ученые как Олгрем, Цепринтц, Мохорович, Гуттенберг, Вихерт, Джеффрис, Буллен, Лапвуд и другие.

Джеффрис одним из первых рассчитал кривую времен пробега сейсмических волн (годограф) в зависимости от строения Земли. Это позволило по записям колебаний на сейсмограмме точно определять место и время возникновения землетрясений. Для этого было достаточно измерить моменты вступления Р и S волн на станции и по интервалу времени между ними с использованием годографа рассчитать дистанцию (эпицентральное расстояние) между станцией, где получена запись и эпицентром землетрясения. Сопоставляя полученные расстояния по нескольким станциями можно точно определить место и время возникновения землетрясения или, как его называют сейсмологи время в очаге (t0).



Расшифровка структуры записи сейсмических волн очень сложная задача. С момента вступления Р-волн (в ближней зоне землетрясений) и длительное время после, сейсмическая запись не бывает спокойной, а вступления остальных фаз происходят на фоне предыдущих колебаний. С другой стороны, на сейсмограмме всегда присутствуют микроколебания – микросейсмы (сейсмические шумы), которые затрудняют измерения. Чем чувствительнее прибор, тем больше амплитуда помех, а значит и ошибки в определении координат и глубины очага землетрясения.

Традиционно сейсмостанции оснащаются сейсмографами для записи колебаний в виде сейсмограммы смещений. Однако существуют и другие типы сейсмических приборов. Это велосиграфы для записи скоростей и акселерометры для записи ускорений грунта. Эти приборы устанавливаются в инженерных сооружениях там, где могут возникнуть интенсивные сейсмические колебания. Они находятся в режиме ожидания, и включаются при сильных землетрясениях. С их помощью удаётся точно определять продолжительность разрушающей фазы землетрясения и её частотный спектр.

Наряду с сейсмическими станциями на суше создаётся все больше пунктов наблюдений на морском дне. В 1940 году было обнаружено, что помимо распространяющихся в твердой оболочке Земли сейсмических волн, у землетрясений есть акустическая компонента Т-фаза. Её исследование имеет большой интерес для поиска методов прогноза цунами. Поэтому на морских станциях, наряду с сейсмографами, устанавливаются гидрофоны для записи акустических сигналов.

Достижения электроники и современные телекоммуникации обеспечили условия для создания цифровых сейсмических станций с передачей данных по телеметрическим каналам связи. С другой стороны, переход с телесейсмического на региональный, а затем и на локальный уровень наблюдений сопровождается порядковым скачком объёма данных который человеческий мозг без компьютеров проанализировать не в состоянии.

Рост количества пунктов наблюдений и совершенствование приборов для записи сейсмических колебаний позволили регистрировать с каждым десятилетием всё больше землетрясений происходящих в недрах планеты. Если в начале 1900-х годов регистрировалось около 40 землетрясений магнитуды 7 и выше, то к XXI веку местоположение и сила всех происходящих землетрясений такой магнитуды фиксировалась, и составила более 4000 событий за десятилетие.

Новые информационные и коммуникационные технологии (ИКТ) позволили автоматизировать передачу, обработку и анализ сейсмологических данных. Сейсмические каталоги стали составляться с большей детальностью отображая сейсмическую активность всего земного шара начиная с магнитуды 6 и выше. Так если в начале первого десятилетия прошлого века таковых было зафиксировано только пять штук, то в первом десятилетии XXI века их уже было в тысячу раз больше – почти пять тысяч.

Зачастую ошибочно сообщают об увеличении числа землетрясений на планете исходя из этих данных. Однако это не так. Повышение чувствительности приборов и количества пунктов на планете позволяет регистрировать больше сейсмических событий. Это хорошо видно на примере графиков числа зарегистрированных землетрясений с 1900 по 2015 год. Для землетрясений магнитуды 6 и 7 такой рост действительно происходит но он связан с инструментальными возможностями и использованием в обработке данных электронно-вычислительных машин. Для землетрясений больших магнитуд роста нет и среднегодовое число значимо не изменятся.


Динамика роста количества информации о происходящих на планете землетрясениях. Из графика событий магнитудой около 6 по шкале Рихтера видно, как увеличивалась чувствительность сейсмических наблюдений в мире. На восходящем тренде землетрясений магнитуды около 7 выделяется квазипериодические колебания с пиками в 1911—1920, 1931—1940, 196—1970 и 1991—2000 годах обязанные природному фактору.


Развитие Интернет позволило оперативно сообщать о происходящих на планете землетрясениях. На специальных веб-сайтах благодаря машинной обработке очень быстро появляются сведения о каждом сильном землетрясении, где бы оно не произошло на планете. Подобные службы имеются в Европе, США, России и других странах.

Методы сейсмологии оказались востребованы после запрета испытаний в воздухе и на земле. Подрывы ядерных зарядов начали проводить под землей, а поскольку от них сейсмические волны распространяются также так же как от землетрясений, поэтому по их записям можно точно определить место, время и мощность испытанного ядерного оружия.

Основная проблема заключается в том, как отличить ядерные взрывы от землетрясений, происходящих на планете почти непрерывно. Тем более что для сокрытия мощности и особенностей ядерного заряда испытания проводятся там, где часто возникают обычные землетрясения. Отметим, хотя волновые поля от взрывов и землетрясений содержат заметные для сейсмологов отличия и, все же по ним не всегда удается однозначно установить факт проведения подземных взрывов.

Сейсмические явления сопровождают эволюцию других планет солнечной системы, и получают научное наименование в зависимости от места своего возникновения. В 1997 году орбитальным спутником Сохо зарегистрировано солнцетрясение излучившее в сорок тысяч раз больше энергии, чем землетрясение в Сан-Франциско 1906 года. Этой энергии с лихвой хватило бы для обеспечения США электроэнергией в течение двадцати лет.

20 июля 1969 года произошло знаменательное событие. Впервые сейсмические наблюдения начали вестись на другой планете. Американскими астронавтами Нилом Амстронгом и Базом Олдрином во время экспедиции «Аполлон-11» в Море Спокойствия в 168 метрах от лунного модуля установлена первая инопланетная сейсмическая станция. Аппаратура весила 48 килограмм и запитывалась от солнечных батарей. Станция проработала около месяца позволив обнаружить лунотрясения, а также то, что падение метеоритов вызывает долго незатухающие сейсмические колебания лунной поверхности.


Сейсмограммы землетрясения (1995) магнитудой 5,1 и ядерного взрыва (1998) магнитудой 4,8 в Индии.


В ноябре 1969 года экспедиция «Аполлон-12» смогла провести более длительные сейсмические наблюдения на Луне. Затем экспедициями 14, 15 и 16 на видимой стороне спутника Земли были установлены еще три высокочувствительные станции оснащенные приборами для наблюдений в широком частотном диапазоне.

Во время экспедиции «Аполлон-12» зарегистрировано много лунотрясений. Их природа была связана как с тектоническими процессами и воздействием на Луну земных приливов, так и ударами метеоров о её поверхность. Самое первое записанное лунотрясение было вызвано ударом о поверхность модуля, на котором астронавты летали на поверхность Луны.

Удар 2,5 тонного аппарата «Аполлон-12» на первой лунной космической скорости (1,7 км/с) был эквивалентен взрыву 800 килограммов тротила. С поверхности поднялось многотонное облако пыли, а через 23,5 секунды волны от удара записал сейсмометр. Колебания лунного грунта продолжалось около часа, что стало сюрпризом для исследователей. Оказалось, что в отличие от Земли на Луне возникают долго незатухающие колебания, подобно тому, как если это был колокол.

Помимо обнаружения лунотрясений астронавты смогли провести первую сейсморазведку на другой планете. На профилях длиной в несколько десятков метров они через каждые 4 – 5 метров производили удары по грунту, и записывали сигналы. На первых инопланетных профилях также устанавливались специальные заряды, подрывавшиеся по команде с Земли, но уже без космонавтов на Луне.


Сейсмостанция экспедиции «Аполлон-17» на Луне (NASA, Public Domain).


13 мая 1972 года в 142 километрах от лунной сейсмостанции упал метеорит диаметром два метра на скорости 20 км/с. Удар от него был настолько силн, что образовался кратер диаметром в сто метров. Сейсмометры на двух сейсмостанциях расположенных в 967 километрах и 1026 километрах от места падения метеорита зашкалили, но смогли записать лунотрясение. После обработки сейсмограмм было обнаружено существование у Луны коры. Она оказалась слоистой и сложенной из кальциево-алюминиевых пород с высокими градиентами скоростей.

Во время экспедиции «Аполлон-13» высадки людей на поверхность Луны не было, но ею было вызвано искусственное лунотрясение. Так, третья ступень ракеты «Сатурн» весом в 15 тонн на второй космической скорости (2,5 км/с) ударилась о лунную поверхность на расстоянии 135 км от сейсмометров. Это удар был эквивалентен взрыву десяти тонн тротила, а колебания от него не затухали четыре часа.

Еще недавно казалось, что исследования сейсмичности Луны представляют чисто научный интерес, однако планы организовать на этой планете обитаемую станцию перевели их в разряд практически важных. На Луне в 1972 – 1977 годах зарегистрированы несколько лунотрясений с магнитудой около 5,5 по шкале Рихтера. Если подобное лунотрясение произойдет вблизи от лунной станции, то она может не выдержать сейсмического удара.


Цифровые сейсмические станции в мире. Увеличение числа и чувствительности станций позволяет регистрировать всё больше сейсмических событий на планете.


Еще продолжалась работа первой лунной сейсмической сети, когда к сейсмическому патрулю присоединилась четвёртая планета Солнечной системы – Марс. Первые сейсмические наблюдения на этой планете были проведены спустя сто лет после Великого противостояния 1877 года, когда были открыты спутники и каналы Марса.

Планировалась работа на Марсе двух сейсмических станций летевших на космических аппаратах «Викинг». Однако первый сейсмометр при посадке на равнине Хриса не смог распаковаться, и включить электропитание. Зато второй, на равнине Утопия, проработал в течение 19 земных месяцев, с 4 сентября 1976 года по 3 апреля 1978 года.

6 ноября 1976 года удалось впервые записать марсотрясение с магнитудой около трех по шкале Рихтера. Однако общие результаты марсианских наблюдений оказались менее результативны, чем на Луне. Видимо только в будущем удастся найти ответы на поставленные вопросы о внутреннем строении четвертой планеты. Тем не менее, важен тот факт, что сейсмические исследования перекинулись на другие планеты, свидетельствуя о появлении нового направления сейсмологии – внеземного.

Изучение сейсмической активности небесных тел очень важно для понимания геологических процессов происходивших на Земле в древности и её будущей судьбы. В этой связи в 1968 году учёный и писатель Иван Ефремов отметил: «К физическим исследованиям Земли как планеты, небесного тела примыкает астрофизика. Изучение развития разновозрастных планет, звезд, метеоритов дает нам возможность в известной мере восстановить ту часть истории Земли, которая не записана в геологической летописи – слоях земной коры и относится к эпохе начального образования Земли».

Сейсмология: Цифры и Факты

132 год. В Китае астроном Чжан Хэн изобретает сейсмоскоп – первый в мире прибор для регистрации землетрясений.

1703 год. Во Франции Отфёй изобретает сейсмоскоп.

1760 год. В Великобритании Джон Мичелл опубликовал книгу «Предположения о причинах возникновения землетрясений и наблюдения за этим феноменом».

1787 год. В Италии Атанасио Ковалли построил сейсмоскоп собственной конструкции сейсмоскопа.

1846 год. Ирландский учёный Роберт Маллет представил в Королевской ирландской академии свой доклад «О динамике землетрясений».

1862 год. Ирландский учёный Роберт Маллет опубликовал статью «Великое Неаполитанское землетрясение 1857 года: основные законы наблюдательной сейсмологии».

1883 год. В странах Латинской Америки начато использование шкалы Росси-Фореля для оценки силы проявления землетрясений.

1887 год. В Японии профессор Секийа впервые на трехмерной проволочной диаграмме создал модель перемещения точки грунта впервые двадцать секунд после начала землетрясения на основе сейсмограммы полученной 15 января 1897 года в Японии.

1892 год. В Великобритании Джон Мильн сконструировал первый сейсмограф способный регистрировать сильные землетрясения на планете.

1893 год. Сейсмолог Джон Мильн и инженер В.К.Бёртон опубликовали книгу «Великое землетрясение в Японии 1891».

1899 год. В Великобритании Ричард Диксон Олдхэм в записях Ассамского землетрясения 1897 года выделил истинные вступления S-волн.

Конец XIX века. В Швейцарии создана первая шкала для оценки силы проявления землетрясения на поверхности земли. Появилась десятибалльная шкала М. Росси (1834—1898) и Ф. Фореля (1841—1912).

1900 год. В Германии Эмиль Вихерт разработал теорию сейсмографа, и конструирует первые высокочувствительные приборы для записи колебаний от землетрясений.

1900 год. В Японии начала применятся семибалльная шкала Омори для оценки силы землетрясения на поверхности земли.

1902 год. В Европе создана шкала Меркалли для оценки силы проявления на поверхности земли землетрясения.

1902 год. В России Б. Б. Голицын разработал гальванометрический метод регистрации сейсмических волн, позволявший автоматически преобразовывать механические перемещения в электрическую форму.

1905 год. Образована Международная ассоциации сейсмологии.

1906—1908 годы. В США после землетрясения в Сан-Франциско и Мессине проводятся специальные инженерные исследования причин разрушения и повреждения зданий.

1912 год. В России Б. Б. Голицын опубликовал «Лекции по сейсмометрии»,

1912 год. В Германии Альфред Лотар Вегенер в опубликованной в журнале «Геологише Рундшау» статье излагает гипотезу континентального дрейфа материков, и публикует книгу «Возникновение материков и океанов».

1912 год. Во многих странах используется 12-ти балльная шкала определения интенсивности сейсмических колебаний Меркалли-Канкани-Зиберга.

1917 год. Международной ассоциацией сейсмологии и недр Земли для употребления в европейских странах утверждена 12-ти балльная шкала Меркалли-Канкани-Зиберга.

1922 год. В Германии Альфред Лотар Вегенер опубликовал книгу «Климат древних времён».

1923 год. В Японии сейсмолог Фусакити Омори под впечатлением трагических последствий Великого землетрясения Канто разработал первый в мире метод расчёта сейсмостойких конструкций.

1924 год. В США Гарольд Джеффрис опубликовал книгу «Земля: ее происхождение, история и строение».

1927 год. В СССР ученый Завриев в общей форме изложил принципы метода динамического расчета сейсмических нагрузок на сооружения.

1931 год. В США начала использоваться модифицированная Вудом шкала Меркалли для оценки силы проявления землетрясения на дневной поверхности.

1933 год. Впервые при землетрясении в городе Лонг-Бич (США) царапина, оставленная на полу кухонной плитой, стала документальным подтверждением существования сложных движений в эпицентральных зонах сильных землетрясений.

1933 год. В СССР И. Мушкетовым опубликована первая макросейсмическая карта сейсмического районирования Центральной Азии.

1935 год. В США Чарльзом Рихтером разработана шкала магнитуд для сравнения по энергии землетрясений.

1937 год. Появилась первая в мире официальная нормативная карта общего (обзорного) сейсмического районирования всей территории бывшего СССР Г.П.Горшкова. Он положил начало регулярному составлению таких карт для регламентирования проектирования и строительства в сейсмоактивных районах СССР. Карта включена в официальное издание «Правила антисейсмического строительства».

Начало 40-х годов прошлого столетия. В США на основе инженерного анализа повреждения сооружений при землетрясениях 1923 года в Сан-Франциско и 1933 года в городе Лонг-Бич разработан спектральный метод динамического воздействия на сооружения.

Середина 40-х годов прошлого столетия. В СССР Корчинский создаёт теоретические основы спектрального метода расчета сейсмостойких конструкций на основе реальных акселерограмм (записей ускорений грунтов при землетрясениях).

1945 год. Составлена первая карта основных сейсмических зон Турции с пояснительной запиской Эгерена и Лана.

1948 год. В СССР последствия катастрофического землетрясения в Ашхабаде привели к разработке государственной программы сейсмостойкого строительства в СССР. Впервые в стране проведено крупномасштабное изучение причин массового обрушения и повреждения зданий гражданского и промышленного назначения.

1948 год. В Иране при Тегеранском университете создан институт геофизики для проведения исследований землетрясений и разработки рекомендаций по сейсмостойкому строительству в Иране.

1949 год. В СССР приняты «Технические условия проектирования зданий и сооружений для сейсмоактивных районов».

1951 год. В СССР утверждено «Положение по строительству в сейсмических районах».

1952 год. В СССР утверждена новая редакция шкалы ОСТ-ВКС4537 для определения интенсивности сейсмических колебаний как государственный стандарт ГОСТ-6249—52.

1957 год. В СССР опубликованы новые «Нормы и правила строительства в сейсмических районах» и Карта общего сейсмического районирования (ОСР) под редакцией С.В.Медведева и Б.А.Петрушевского.

1958 год. В США Чарльз Рихтер опубликовал книгу «Элементарная сейсмология».

1959 год. В США ассоциация инженеров-конструкторов Калифорнии подготовила отчет по проблеме сейсмостойкого проектирования и выпустила переработанное издание рекомендаций по расчету на горизонтальные нагрузки. Оно вошло во все последующие издания Единых строительных норм США.

1959 год. В СССР Ю.В.Ризниченко для сравнения уровня сейсмической активности территорий предложен новый параметр – «сейсмическая сотрясаемость».

1964 год. В СССР начала использоваться 12-балльная шкала МSK-64, разработанная Медведевым (СССР), Шпонхойером (ГДР) и Карником (Чехословакия).

1968 год. В СССР Опубликована новая карта общего сейсмического районирования (ОСР) под редакцией С.В.Медведева.

1969 год. Впервые сейсмические наблюдения начали вестись на другой планете. Американскими астронавтами Нилом Амстронгом и Базом Олдрином во время экспедиции «Аполлон-11» в Море Спокойствия в 168 метрах от лунного модуля установлена первая инопланетная сейсмическая станция.

1970 год. В СССР приняты новые «Строительные нормы и правила» учитывающие особенности строительства в сейсмоактивных регионах страны.

1971 год. В США землетрясение в Сан-Фернандо привело к пересмотру всей системы проектирования сейсмостойких конструкций. В числе сильно разрушенных построек оказались и новые, построенные на основе ранее принятых норм и правил расчета конструкций на сейсмические нагрузки.

1975 год. В СССР сейсмолог Д.Н.Рустанович собрал и систематизировал записи колебаний поверхности земли в эпицентральных зонах сильных землетрясений.

1976 год. Впервые во время американской экспедиции «Викинг» на Марсе начаты сейсмические наблюдения на равнине Утопия.

1977 год. В СССР издан «Новый каталог сильных землетрясений на территории СССР». Каталог стал основой для создания новой карты сейсмического районирования СССР – СР-78.

1978 год. В СССР принята новая карта сейсмического районирования СР-78 под редакцией М.А.Садовского.

1970-е годы прошлого столетия. В США создаются принципы общего процесса проектирования на основе представления о рисках.

1977 год. В США Хиро Канамори и Том Хэнкс разработали шкалу сейсмического момента для сравнения энергии крупнейших землетрясений.

1985 год. Землетрясение в Мехико привело к пересмотру представлений о методах современного сейсмостойкого градостроительства в сложных грунтовых условиях.

1988 год. В СССР землетрясение в Армении (Спитак) положило началу пересмотра утвержденных в 1981 году норм сейсмостойкого строительства в стране. С распадом Советского Союза процесс пересмотра карты общего сейсмического районирования для России затормозился, а в странах СНГ практически не был начат.

1995 год. В Японии землетрясение в Кобе ставит вопрос о необходимости паспортизации зданий и сооружений старой постройки в стране.

1998 год. В Европейском союзе начала использоваться макросейсмическая шкала ЕMS-98 для описания эффекта землетрясения.

1998 год. В Казахстане введены новые нормы сейсмостойкого строительства и проектирования.

1999 год. Землетрясения в Турции и на Тайване выявили значительные ошибки в подходе к проектированию жилья и применения норм сейсмостойкого строительства в современных условиях.

2000 год. В России издан комплект карт общего сейсмического районирования территории Российской Федерации ОСР-97.

2001 год. В России принята федеральная целевая программа «Сейсмобезопасность территории России».

Почему столь многочисленны жертвы землетрясений?

Вот пришло землетрясение, какую пользу принесло богатство? Труд того и другого пропал, погибло имущество вместе с владением, дом вместе со строителем. Город сделался общим для всех гробом, устроенным внезапно не руками мастеров, но несчастным случаем. Где богатство? Где любостяжание? Видите ли, как все оказалось ничтожнее паутины?

На страницу:
3 из 4