
Полная версия
Катастрофы в природе: землетрясения
Из-за неоднородности недр на сейсмограмме отражается широкий спектр сейсмических волн разного типа. Помимо P и S волн к основным относятся т.н. поверхностные волны Рэлея и Лява (R и L). Они названы по именам ученых разработавших математическую теорию их распространения.
При прохождении волн Рэлея частицы среды описывают вертикальные эллипсы вдоль направления распространения. В поверхностных волнах Лява частицы среды колеблются перпендикулярно направлению своего распространения. Эти типы волн распространяются по земной поверхности подобно волнам в водоемах со скоростью 3,2 – 4,4 км/с.

Из-за того, что Р-волны вблизи от очага землетрясения имеют большую скорость, чем S-волны они регистрируются первыми, отсюда их наименование «Primary». Поперечные S-волны распространяются с меньшей скоростью и приходят следом за P-волнами. Соответственно их назвали вторичными волнами «Secondary». Чем дальше от очага землетрясения расположена сейсмическая станция, тем больший интервал времени между моментами вступления на сейсмограмме P и S волн. Это свойство используется для определения дистанции от станции до очага землетрясения.
На больших удалениях от источника волновая картина значительно меняется из-за неоднородности земных недр. Для её расшифровки в этом случае используются специальные годографы времён пробега типов волн. Один из первых широко использовавшихся годографов получил название по имени его создателей англичанина Сэра Гарольда Джеффриса и австралийца Кита Эдварда Буллена. Буллен также построил одну из первых сейсмических моделей внутреннего строения Земли.

Сейсмические волны проходят внутри земного шара в местах недоступных для прямых измерений. Все, что они встречают на пути, формирует их структуру, и отражается на сейсмограммах. Их анализ позволяет получить представление о том, как распространялись сейсмические волны и изучать строение земных недр.
Интересен сам по себе факт открытия сейсмических волн. Теоретически существование в твердых телах объёмных Р и S волн предсказано в 1829 году Пуассоном, но до 1900 года сейсмологам не удавалось их однозначно распознавать на сейсмограммах. Многие исследователи принимали поверхностные волны Релея за вступления S-волн и приходили к ошибочным результатам.
Проблема была решена в 1899 году Ричардом Диксоном Олдхэмом сумевшего в записях Ассамского землетрясения 1897 года выделить истинные вступления S-волн. Это позволило уже к 1914 году составить общую картину строения планеты и её скоростного разреза. Выдающийся вклад в решение этой задачи внесли такие ученые как Олгрем, Цепринтц, Мохорович, Гуттенберг, Вихерт, Джеффрис, Буллен, Лапвуд и другие.
Джеффрис одним из первых рассчитал кривую времен пробега сейсмических волн (годограф) в зависимости от строения Земли. Это позволило по записям колебаний на сейсмограмме точно определять место и время возникновения землетрясений. Для этого было достаточно измерить моменты вступления Р и S волн на станции и по интервалу времени между ними с использованием годографа рассчитать дистанцию (эпицентральное расстояние) между станцией, где получена запись и эпицентром землетрясения. Сопоставляя полученные расстояния по нескольким станциями можно точно определить место и время возникновения землетрясения или, как его называют сейсмологи время в очаге (t0).

Расшифровка структуры записи сейсмических волн очень сложная задача. С момента вступления Р-волн (в ближней зоне землетрясений) и длительное время после, сейсмическая запись не бывает спокойной, а вступления остальных фаз происходят на фоне предыдущих колебаний. С другой стороны, на сейсмограмме всегда присутствуют микроколебания – микросейсмы (сейсмические шумы), которые затрудняют измерения. Чем чувствительнее прибор, тем больше амплитуда помех, а значит и ошибки в определении координат и глубины очага землетрясения.
Традиционно сейсмостанции оснащаются сейсмографами для записи колебаний в виде сейсмограммы смещений. Однако существуют и другие типы сейсмических приборов. Это велосиграфы для записи скоростей и акселерометры для записи ускорений грунта. Эти приборы устанавливаются в инженерных сооружениях там, где могут возникнуть интенсивные сейсмические колебания. Они находятся в режиме ожидания, и включаются при сильных землетрясениях. С их помощью удаётся точно определять продолжительность разрушающей фазы землетрясения и её частотный спектр.
Наряду с сейсмическими станциями на суше создаётся все больше пунктов наблюдений на морском дне. В 1940 году было обнаружено, что помимо распространяющихся в твердой оболочке Земли сейсмических волн, у землетрясений есть акустическая компонента Т-фаза. Её исследование имеет большой интерес для поиска методов прогноза цунами. Поэтому на морских станциях, наряду с сейсмографами, устанавливаются гидрофоны для записи акустических сигналов.
Достижения электроники и современные телекоммуникации обеспечили условия для создания цифровых сейсмических станций с передачей данных по телеметрическим каналам связи. С другой стороны, переход с телесейсмического на региональный, а затем и на локальный уровень наблюдений сопровождается порядковым скачком объёма данных который человеческий мозг без компьютеров проанализировать не в состоянии.
Рост количества пунктов наблюдений и совершенствование приборов для записи сейсмических колебаний позволили регистрировать с каждым десятилетием всё больше землетрясений происходящих в недрах планеты. Если в начале 1900-х годов регистрировалось около 40 землетрясений магнитуды 7 и выше, то к XXI веку местоположение и сила всех происходящих землетрясений такой магнитуды фиксировалась, и составила более 4000 событий за десятилетие.
Новые информационные и коммуникационные технологии (ИКТ) позволили автоматизировать передачу, обработку и анализ сейсмологических данных. Сейсмические каталоги стали составляться с большей детальностью отображая сейсмическую активность всего земного шара начиная с магнитуды 6 и выше. Так если в начале первого десятилетия прошлого века таковых было зафиксировано только пять штук, то в первом десятилетии XXI века их уже было в тысячу раз больше – почти пять тысяч.
Зачастую ошибочно сообщают об увеличении числа землетрясений на планете исходя из этих данных. Однако это не так. Повышение чувствительности приборов и количества пунктов на планете позволяет регистрировать больше сейсмических событий. Это хорошо видно на примере графиков числа зарегистрированных землетрясений с 1900 по 2015 год. Для землетрясений магнитуды 6 и 7 такой рост действительно происходит но он связан с инструментальными возможностями и использованием в обработке данных электронно-вычислительных машин. Для землетрясений больших магнитуд роста нет и среднегодовое число значимо не изменятся.

Динамика роста количества информации о происходящих на планете землетрясениях. Из графика событий магнитудой около 6 по шкале Рихтера видно, как увеличивалась чувствительность сейсмических наблюдений в мире. На восходящем тренде землетрясений магнитуды около 7 выделяется квазипериодические колебания с пиками в 1911—1920, 1931—1940, 196—1970 и 1991—2000 годах обязанные природному фактору.
Развитие Интернет позволило оперативно сообщать о происходящих на планете землетрясениях. На специальных веб-сайтах благодаря машинной обработке очень быстро появляются сведения о каждом сильном землетрясении, где бы оно не произошло на планете. Подобные службы имеются в Европе, США, России и других странах.
Методы сейсмологии оказались востребованы после запрета испытаний в воздухе и на земле. Подрывы ядерных зарядов начали проводить под землей, а поскольку от них сейсмические волны распространяются также так же как от землетрясений, поэтому по их записям можно точно определить место, время и мощность испытанного ядерного оружия.
Основная проблема заключается в том, как отличить ядерные взрывы от землетрясений, происходящих на планете почти непрерывно. Тем более что для сокрытия мощности и особенностей ядерного заряда испытания проводятся там, где часто возникают обычные землетрясения. Отметим, хотя волновые поля от взрывов и землетрясений содержат заметные для сейсмологов отличия и, все же по ним не всегда удается однозначно установить факт проведения подземных взрывов.
Сейсмические явления сопровождают эволюцию других планет солнечной системы, и получают научное наименование в зависимости от места своего возникновения. В 1997 году орбитальным спутником Сохо зарегистрировано солнцетрясение излучившее в сорок тысяч раз больше энергии, чем землетрясение в Сан-Франциско 1906 года. Этой энергии с лихвой хватило бы для обеспечения США электроэнергией в течение двадцати лет.
20 июля 1969 года произошло знаменательное событие. Впервые сейсмические наблюдения начали вестись на другой планете. Американскими астронавтами Нилом Амстронгом и Базом Олдрином во время экспедиции «Аполлон-11» в Море Спокойствия в 168 метрах от лунного модуля установлена первая инопланетная сейсмическая станция. Аппаратура весила 48 килограмм и запитывалась от солнечных батарей. Станция проработала около месяца позволив обнаружить лунотрясения, а также то, что падение метеоритов вызывает долго незатухающие сейсмические колебания лунной поверхности.

Сейсмограммы землетрясения (1995) магнитудой 5,1 и ядерного взрыва (1998) магнитудой 4,8 в Индии.
В ноябре 1969 года экспедиция «Аполлон-12» смогла провести более длительные сейсмические наблюдения на Луне. Затем экспедициями 14, 15 и 16 на видимой стороне спутника Земли были установлены еще три высокочувствительные станции оснащенные приборами для наблюдений в широком частотном диапазоне.
Во время экспедиции «Аполлон-12» зарегистрировано много лунотрясений. Их природа была связана как с тектоническими процессами и воздействием на Луну земных приливов, так и ударами метеоров о её поверхность. Самое первое записанное лунотрясение было вызвано ударом о поверхность модуля, на котором астронавты летали на поверхность Луны.
Удар 2,5 тонного аппарата «Аполлон-12» на первой лунной космической скорости (1,7 км/с) был эквивалентен взрыву 800 килограммов тротила. С поверхности поднялось многотонное облако пыли, а через 23,5 секунды волны от удара записал сейсмометр. Колебания лунного грунта продолжалось около часа, что стало сюрпризом для исследователей. Оказалось, что в отличие от Земли на Луне возникают долго незатухающие колебания, подобно тому, как если это был колокол.
Помимо обнаружения лунотрясений астронавты смогли провести первую сейсморазведку на другой планете. На профилях длиной в несколько десятков метров они через каждые 4 – 5 метров производили удары по грунту, и записывали сигналы. На первых инопланетных профилях также устанавливались специальные заряды, подрывавшиеся по команде с Земли, но уже без космонавтов на Луне.

Сейсмостанция экспедиции «Аполлон-17» на Луне (NASA, Public Domain).
13 мая 1972 года в 142 километрах от лунной сейсмостанции упал метеорит диаметром два метра на скорости 20 км/с. Удар от него был настолько силн, что образовался кратер диаметром в сто метров. Сейсмометры на двух сейсмостанциях расположенных в 967 километрах и 1026 километрах от места падения метеорита зашкалили, но смогли записать лунотрясение. После обработки сейсмограмм было обнаружено существование у Луны коры. Она оказалась слоистой и сложенной из кальциево-алюминиевых пород с высокими градиентами скоростей.
Во время экспедиции «Аполлон-13» высадки людей на поверхность Луны не было, но ею было вызвано искусственное лунотрясение. Так, третья ступень ракеты «Сатурн» весом в 15 тонн на второй космической скорости (2,5 км/с) ударилась о лунную поверхность на расстоянии 135 км от сейсмометров. Это удар был эквивалентен взрыву десяти тонн тротила, а колебания от него не затухали четыре часа.
Еще недавно казалось, что исследования сейсмичности Луны представляют чисто научный интерес, однако планы организовать на этой планете обитаемую станцию перевели их в разряд практически важных. На Луне в 1972 – 1977 годах зарегистрированы несколько лунотрясений с магнитудой около 5,5 по шкале Рихтера. Если подобное лунотрясение произойдет вблизи от лунной станции, то она может не выдержать сейсмического удара.

Цифровые сейсмические станции в мире. Увеличение числа и чувствительности станций позволяет регистрировать всё больше сейсмических событий на планете.
Еще продолжалась работа первой лунной сейсмической сети, когда к сейсмическому патрулю присоединилась четвёртая планета Солнечной системы – Марс. Первые сейсмические наблюдения на этой планете были проведены спустя сто лет после Великого противостояния 1877 года, когда были открыты спутники и каналы Марса.
Планировалась работа на Марсе двух сейсмических станций летевших на космических аппаратах «Викинг». Однако первый сейсмометр при посадке на равнине Хриса не смог распаковаться, и включить электропитание. Зато второй, на равнине Утопия, проработал в течение 19 земных месяцев, с 4 сентября 1976 года по 3 апреля 1978 года.
6 ноября 1976 года удалось впервые записать марсотрясение с магнитудой около трех по шкале Рихтера. Однако общие результаты марсианских наблюдений оказались менее результативны, чем на Луне. Видимо только в будущем удастся найти ответы на поставленные вопросы о внутреннем строении четвертой планеты. Тем не менее, важен тот факт, что сейсмические исследования перекинулись на другие планеты, свидетельствуя о появлении нового направления сейсмологии – внеземного.
Изучение сейсмической активности небесных тел очень важно для понимания геологических процессов происходивших на Земле в древности и её будущей судьбы. В этой связи в 1968 году учёный и писатель Иван Ефремов отметил: «К физическим исследованиям Земли как планеты, небесного тела примыкает астрофизика. Изучение развития разновозрастных планет, звезд, метеоритов дает нам возможность в известной мере восстановить ту часть истории Земли, которая не записана в геологической летописи – слоях земной коры и относится к эпохе начального образования Земли».
Сейсмология: Цифры и Факты
132 год. В Китае астроном Чжан Хэн изобретает сейсмоскоп – первый в мире прибор для регистрации землетрясений.
1703 год. Во Франции Отфёй изобретает сейсмоскоп.
1760 год. В Великобритании Джон Мичелл опубликовал книгу «Предположения о причинах возникновения землетрясений и наблюдения за этим феноменом».
1787 год. В Италии Атанасио Ковалли построил сейсмоскоп собственной конструкции сейсмоскопа.
1846 год. Ирландский учёный Роберт Маллет представил в Королевской ирландской академии свой доклад «О динамике землетрясений».
1862 год. Ирландский учёный Роберт Маллет опубликовал статью «Великое Неаполитанское землетрясение 1857 года: основные законы наблюдательной сейсмологии».
1883 год. В странах Латинской Америки начато использование шкалы Росси-Фореля для оценки силы проявления землетрясений.
1887 год. В Японии профессор Секийа впервые на трехмерной проволочной диаграмме создал модель перемещения точки грунта впервые двадцать секунд после начала землетрясения на основе сейсмограммы полученной 15 января 1897 года в Японии.
1892 год. В Великобритании Джон Мильн сконструировал первый сейсмограф способный регистрировать сильные землетрясения на планете.
1893 год. Сейсмолог Джон Мильн и инженер В.К.Бёртон опубликовали книгу «Великое землетрясение в Японии 1891».
1899 год. В Великобритании Ричард Диксон Олдхэм в записях Ассамского землетрясения 1897 года выделил истинные вступления S-волн.
Конец XIX века. В Швейцарии создана первая шкала для оценки силы проявления землетрясения на поверхности земли. Появилась десятибалльная шкала М. Росси (1834—1898) и Ф. Фореля (1841—1912).
1900 год. В Германии Эмиль Вихерт разработал теорию сейсмографа, и конструирует первые высокочувствительные приборы для записи колебаний от землетрясений.
1900 год. В Японии начала применятся семибалльная шкала Омори для оценки силы землетрясения на поверхности земли.
1902 год. В Европе создана шкала Меркалли для оценки силы проявления на поверхности земли землетрясения.
1902 год. В России Б. Б. Голицын разработал гальванометрический метод регистрации сейсмических волн, позволявший автоматически преобразовывать механические перемещения в электрическую форму.
1905 год. Образована Международная ассоциации сейсмологии.
1906—1908 годы. В США после землетрясения в Сан-Франциско и Мессине проводятся специальные инженерные исследования причин разрушения и повреждения зданий.
1912 год. В России Б. Б. Голицын опубликовал «Лекции по сейсмометрии»,
1912 год. В Германии Альфред Лотар Вегенер в опубликованной в журнале «Геологише Рундшау» статье излагает гипотезу континентального дрейфа материков, и публикует книгу «Возникновение материков и океанов».
1912 год. Во многих странах используется 12-ти балльная шкала определения интенсивности сейсмических колебаний Меркалли-Канкани-Зиберга.
1917 год. Международной ассоциацией сейсмологии и недр Земли для употребления в европейских странах утверждена 12-ти балльная шкала Меркалли-Канкани-Зиберга.
1922 год. В Германии Альфред Лотар Вегенер опубликовал книгу «Климат древних времён».
1923 год. В Японии сейсмолог Фусакити Омори под впечатлением трагических последствий Великого землетрясения Канто разработал первый в мире метод расчёта сейсмостойких конструкций.
1924 год. В США Гарольд Джеффрис опубликовал книгу «Земля: ее происхождение, история и строение».
1927 год. В СССР ученый Завриев в общей форме изложил принципы метода динамического расчета сейсмических нагрузок на сооружения.
1931 год. В США начала использоваться модифицированная Вудом шкала Меркалли для оценки силы проявления землетрясения на дневной поверхности.
1933 год. Впервые при землетрясении в городе Лонг-Бич (США) царапина, оставленная на полу кухонной плитой, стала документальным подтверждением существования сложных движений в эпицентральных зонах сильных землетрясений.
1933 год. В СССР И. Мушкетовым опубликована первая макросейсмическая карта сейсмического районирования Центральной Азии.
1935 год. В США Чарльзом Рихтером разработана шкала магнитуд для сравнения по энергии землетрясений.
1937 год. Появилась первая в мире официальная нормативная карта общего (обзорного) сейсмического районирования всей территории бывшего СССР Г.П.Горшкова. Он положил начало регулярному составлению таких карт для регламентирования проектирования и строительства в сейсмоактивных районах СССР. Карта включена в официальное издание «Правила антисейсмического строительства».
Начало 40-х годов прошлого столетия. В США на основе инженерного анализа повреждения сооружений при землетрясениях 1923 года в Сан-Франциско и 1933 года в городе Лонг-Бич разработан спектральный метод динамического воздействия на сооружения.
Середина 40-х годов прошлого столетия. В СССР Корчинский создаёт теоретические основы спектрального метода расчета сейсмостойких конструкций на основе реальных акселерограмм (записей ускорений грунтов при землетрясениях).
1945 год. Составлена первая карта основных сейсмических зон Турции с пояснительной запиской Эгерена и Лана.
1948 год. В СССР последствия катастрофического землетрясения в Ашхабаде привели к разработке государственной программы сейсмостойкого строительства в СССР. Впервые в стране проведено крупномасштабное изучение причин массового обрушения и повреждения зданий гражданского и промышленного назначения.
1948 год. В Иране при Тегеранском университете создан институт геофизики для проведения исследований землетрясений и разработки рекомендаций по сейсмостойкому строительству в Иране.
1949 год. В СССР приняты «Технические условия проектирования зданий и сооружений для сейсмоактивных районов».
1951 год. В СССР утверждено «Положение по строительству в сейсмических районах».
1952 год. В СССР утверждена новая редакция шкалы ОСТ-ВКС4537 для определения интенсивности сейсмических колебаний как государственный стандарт ГОСТ-6249—52.
1957 год. В СССР опубликованы новые «Нормы и правила строительства в сейсмических районах» и Карта общего сейсмического районирования (ОСР) под редакцией С.В.Медведева и Б.А.Петрушевского.
1958 год. В США Чарльз Рихтер опубликовал книгу «Элементарная сейсмология».
1959 год. В США ассоциация инженеров-конструкторов Калифорнии подготовила отчет по проблеме сейсмостойкого проектирования и выпустила переработанное издание рекомендаций по расчету на горизонтальные нагрузки. Оно вошло во все последующие издания Единых строительных норм США.
1959 год. В СССР Ю.В.Ризниченко для сравнения уровня сейсмической активности территорий предложен новый параметр – «сейсмическая сотрясаемость».
1964 год. В СССР начала использоваться 12-балльная шкала МSK-64, разработанная Медведевым (СССР), Шпонхойером (ГДР) и Карником (Чехословакия).
1968 год. В СССР Опубликована новая карта общего сейсмического районирования (ОСР) под редакцией С.В.Медведева.
1969 год. Впервые сейсмические наблюдения начали вестись на другой планете. Американскими астронавтами Нилом Амстронгом и Базом Олдрином во время экспедиции «Аполлон-11» в Море Спокойствия в 168 метрах от лунного модуля установлена первая инопланетная сейсмическая станция.
1970 год. В СССР приняты новые «Строительные нормы и правила» учитывающие особенности строительства в сейсмоактивных регионах страны.
1971 год. В США землетрясение в Сан-Фернандо привело к пересмотру всей системы проектирования сейсмостойких конструкций. В числе сильно разрушенных построек оказались и новые, построенные на основе ранее принятых норм и правил расчета конструкций на сейсмические нагрузки.
1975 год. В СССР сейсмолог Д.Н.Рустанович собрал и систематизировал записи колебаний поверхности земли в эпицентральных зонах сильных землетрясений.
1976 год. Впервые во время американской экспедиции «Викинг» на Марсе начаты сейсмические наблюдения на равнине Утопия.
1977 год. В СССР издан «Новый каталог сильных землетрясений на территории СССР». Каталог стал основой для создания новой карты сейсмического районирования СССР – СР-78.
1978 год. В СССР принята новая карта сейсмического районирования СР-78 под редакцией М.А.Садовского.
1970-е годы прошлого столетия. В США создаются принципы общего процесса проектирования на основе представления о рисках.
1977 год. В США Хиро Канамори и Том Хэнкс разработали шкалу сейсмического момента для сравнения энергии крупнейших землетрясений.
1985 год. Землетрясение в Мехико привело к пересмотру представлений о методах современного сейсмостойкого градостроительства в сложных грунтовых условиях.
1988 год. В СССР землетрясение в Армении (Спитак) положило началу пересмотра утвержденных в 1981 году норм сейсмостойкого строительства в стране. С распадом Советского Союза процесс пересмотра карты общего сейсмического районирования для России затормозился, а в странах СНГ практически не был начат.
1995 год. В Японии землетрясение в Кобе ставит вопрос о необходимости паспортизации зданий и сооружений старой постройки в стране.
1998 год. В Европейском союзе начала использоваться макросейсмическая шкала ЕMS-98 для описания эффекта землетрясения.
1998 год. В Казахстане введены новые нормы сейсмостойкого строительства и проектирования.
1999 год. Землетрясения в Турции и на Тайване выявили значительные ошибки в подходе к проектированию жилья и применения норм сейсмостойкого строительства в современных условиях.
2000 год. В России издан комплект карт общего сейсмического районирования территории Российской Федерации ОСР-97.
2001 год. В России принята федеральная целевая программа «Сейсмобезопасность территории России».
Почему столь многочисленны жертвы землетрясений?
Вот пришло землетрясение, какую пользу принесло богатство? Труд того и другого пропал, погибло имущество вместе с владением, дом вместе со строителем. Город сделался общим для всех гробом, устроенным внезапно не руками мастеров, но несчастным случаем. Где богатство? Где любостяжание? Видите ли, как все оказалось ничтожнее паутины?