
Полная версия
The Children's Book of Stars
A great astronomer called Halley, who was born in the time of the Commonwealth, was lucky enough to see a very brilliant comet, and the sight interested him so much that he made all the calculations necessary to find out just in what direction it was travelling in the heavens. He found out that it followed an ellipse which brought it very near to the sun at one part of its journey, and carried it far beyond the orbit of the earth, right out to that of Neptune, at the other. Then he began to search the records for other comets which had been observed before his time. He found that two particularly bright ones had been carefully noted – one about seventy-five years before that which he had seen, and the other seventy-five years before that again. Both these comets had been watched so scientifically that the paths in which they had travelled could be computed. A brilliant inspiration came to Halley. He believed that instead of these three, his own and the other two, being different comets, they were the same one, which returned to the sun about every seventy-five years. This could be proved, for if this idea were correct, of course the comet would return again in another seventy-five years, unless something unforeseen occurred. But Halley was in the prime of life: he could not hope to live to see his forecast verified. The only thing he could do was to note down exact particulars, by means of which others who lived after him might recognize his comet. And so when the time came for its return, though Halley was in his grave, numbers of astronomers were watching eagerly to see the fulfilment of his prediction. The comet did indeed appear, and since then it has been seen once again, and now we expect it to come back in the year 1910, when you and I may see it for ourselves. When the identity of the comet was fully established men began to search further back still, to compare the records of other previous brilliant comets, and found that this one had been noticed many times before, and once as I said, at the time of the Norman Conquest. Halley's comet is peculiar in many ways. For instance, it is unusual that so large and interesting a comet should return within a comparatively limited time. It is the smaller comets, those that can only be seen telescopically, that usually run in small orbits. The smallest orbits take about three and a half years to traverse, and some of the largest orbits known require a period of one hundred and ten thousand years. Between these two limits lies every possible variety of period. One comet, seen about the time Napoleon was born, was calculated to take two thousand years to complete its journey, and another, a very brilliant one seen in 1882, must journey for eight hundred years before it again comes near to the sun. But we never know what might happen, for at any moment a comet which has traversed a long solitary pathway in outer darkness may flash suddenly into our ken, and be for the first time noted and recorded, before flying off at an angle which must take it for ever further and further from the sun.
Everything connected with comets is mysterious and most fascinating. From out of the icy regions of space a body appears; what it is we know not, but it is seen at first as a hairy or softly-glowing star, and it was thus that Herschel mistook Uranus for a comet when he first discovered it. As it draws nearer the comet sends out some fan-like projections toward the sun, enclosing its nucleus in filmy wrappings like a cocoon of light, and it travels faster and faster. From its head shoots out a tail – it may be more than one – growing in splendour and width, and always pointing away from the sun. So enormous are some of these tails that when the comet's head is close to the sun the tail extends far beyond the orbit of the earth. Faster still and faster flies the comet, for as we have seen it is a consequence of the law of gravitation that the nearer planets are to the sun the faster they move in their orbits, and the same rule applies to comets too. As the comet dashes up to the sun his pace becomes something indescribable; it has been reckoned for some comets at three hundred miles a second! But behold, as the head flies round the sun the tail is always projected outwards. The nucleus or head may be so near to the sun that the heat it receives would be sufficient to reduce molten iron to vapour; but this does not seem to affect it: only the tail expands. Sometimes it becomes two or more tails, and as it sweeps round behind the head it has to cover a much greater space in the same time, and therefore it must travel even faster than the head. The pace is such that no calculations can account for it, if the tail is composed of matter in any sense as we know it. Then when the sun is passed the comet sinks away again, and as it goes the tail dies down and finally disappears. The comet itself dwindles to a hairy star once more and goes – whither? Into space so remote that we cannot even dream of it – far away into cold more appalling than anything we could measure, the cold of absolute space. More and more slowly it travels, always away and away, until the sun, a short time back a huge furnace covering all the sky, is now but a faint star. Thus on its lonely journey unseen and unknown the comet goes.
This comet which we have taken as an illustration is a typical one, but all are not the same. Some have no tails at all, and never develop any; some change utterly even as they are watched. The same comet is so different at different times that the only possible way of identifying it is by knowing its path, and even this is not a certain method, for some comets appear to travel at intervals along the same path!
Now we come to the question that must have been in the mind of everyone from the beginning of this chapter, What are comets? This question no one can answer definitely, for there are many things so puzzling about these strange appearances that it is difficult even to suggest an explanation. Yet a good deal is known. In the first place, we are certain that comets have very little density – that is to say, they are indescribably thin, thinner than the thinnest kind of gas; and air, which we always think so thin, would be almost like a blanket compared with the material of comets. This we judge because they exercise no sort of influence on any of the planetary bodies they draw near to, which they certainly would do if they were made of any kind of solid matter. They come sometimes very close to some of the planets. A comet was so near to Jupiter that it was actually in among his moons. The comet was violently agitated; he was pulled in fact right out of his old path, and has been going on a new one ever since; but he did not exercise the smallest effect on Jupiter, or even on the moons. And, as I said earlier in this chapter, we on the earth have been actually in the folds of a comet's tail. This astonishing fact happened in June, 1861. One evening after the sun had set a golden-yellow disc, surrounded with filmy wrappings, appeared in the sky. The sun's light, diffused throughout our atmosphere, had prevented its being seen sooner. This was apparently the comet's head. It is described as 'though a number of light, hazy clouds were floating around a miniature full moon.' From this a cone of light extended far up into the sky, and when the head disappeared below the horizon this tail was seen to reach to the zenith. But that was not all. Strange shafts of light seemed to hang right overhead, and could only be accounted for by supposing that they were caused by another tail hanging straight above us, so that we looked up at it foreshortened by perspective. The comet's head lay between the earth and the sun, and its tail, which extended over many millions of miles, stretched out behind in such a way that the earth must have gone right through it. The fact that the comet exercised no perceptible influence on the earth at all, and that there were not even any unaccountable magnetic storms or displays of electricity, may reassure us so that if ever we do again come in contact with one of these extremely fine, thin bodies, we need not be afraid.
There is another way in which we can judge of the wonderful tenuity or thinness of comets – that is, that the smallest stars can be seen through their tails, even though those tails must be many thousands of miles in thickness. Now, if the tails were anything approaching the density of our own atmosphere, the stars when seen through them would appear to be moved out of their places. This sounds odd, and requires a word of explanation. The fact is that anything seen through any transparent medium like water or air is what is called refracted – that is to say, the rays coming from it look bent. Everyone is quite familiar with this in everyday life, though perhaps they may not have noticed it. You cannot thrust a stick into the water without seeing that it looks crooked. Air being less dense than water has not quite so strong a refracting power, but still it has some. We cannot prove it in just the same way, because we are all inside the atmosphere ourselves, and there is no possibility of thrusting a stick into it from the outside! The only way we know it is by looking at something which is 'outside' already, and we find plenty of objects in the sky. As a matter of fact, the stars are all a little pulled out of their places by being seen through the air, and though of course we do not notice this, astronomers know it and have to make allowance for it. The effect is most noticeable in the case of the sun when he is going down, for the atmosphere bends his rays up, and though we see him a great glowing red ball on the horizon, and watch him, as we think, drop gradually out of sight, we are really looking at him for the last moment or two when he has already gone, for the rays are bent up by the air and his image lingers when the real sun has disappeared.
Therefore in looking through the luminous stuff that forms a comet's tail astronomers might well expect to see the stars displaced, but not a sign of this appears. It is difficult to imagine, therefore, what the tail can be made of. The idea is that the sun exercises a sort of repulsive effect on certain elements found in the comet's head – that is to say, it pushes them away, and that as the head approaches the sun, these elements are driven out of it away from the sun in vapour. This action may have something to do with electricity, which is yet little understood; anyway, the effect is that, instead of attracting the matter toward itself, in which case we should see the comet's tails stretching toward the sun, the sun drives it away! In the chapter on the sun we had to imagine something of the same kind to account for the corona, and the corona and the comet's tails may be really akin to each other, and could perhaps be explained in the same way. Now we come to a stranger fact still. Some comets go right through the sun's corona, and yet do not seem to be influenced by it in the smallest degree. This may not seem very wonderful at first perhaps, but if you remember that a dash through anything so dense as our atmosphere, at a pace much less than that at which a comet goes, is enough to heat iron to a white heat, and then make it fly off in vapour, we get a glimpse of the extreme fineness of the materials which make the corona.
Here is Herschel's account of a comet that went very near the sun:
'The comet's distance from the sun's centre was about the 160th part of our distance from it. All the heat we enjoy on this earth comes from the sun. Imagine the heat we should have to endure if the sun were to approach us, or we the sun, to one 160th part of its present distance. It would not be merely as if 160 suns were shining on us all at once, but, 160 times 160, according to a rule which is well known to all who are conversant with such matters. Now, that is 25,600. Only imagine a glare 25,600 times fiercer than that of the equatorial sunshine at noon day with the sun vertical. In such a heat there is no substance we know of which would not run like water, boil, and be converted into smoke or vapour. No wonder the comet gave evidence of violent excitement, coming from the cold region outside the planetary system torpid and ice-bound. Already when arrived even in our temperate region it began to show signs of internal activity; the head had begun to develop, and the tail to elongate, till the comet was for a time lost sight of – not for days afterwards was it seen; and its tail, whose direction was reversed, and which could not possibly be the same tail it had before, had already lengthened to an extent of about ninety millions of miles, so that it must have been shot out with immense force in a direction away from the sun.'
We remember that comets have sometimes more than one tail, and a theory has been advanced to account for this too. It is supposed that perhaps different elements are thrust away by the sun at different angles, and one tail may be due to one element and another to another. But if the comet goes on tail-making to a large extent every time it returns to the sun, what happens eventually? Do the tails fall back again into the head when out of reach of the sun's action? Such an idea is inconceivable; but if not, then every time a comet approaches the sun he loses something, and that something is made up of the elements which were formerly in the head and have been violently ejected. If this be so we may well expect to see comets which have returned many times to the sun without tails at all, for all the tail-making stuff that was in the head will have been used up, and as this is exactly what we do see, the theory is probably true.
Where do the comets come from? That also is a very large question. It used to be supposed they were merely wanderers in space who happened to have been attracted by our sun and drawn into his system, but there are facts which go very strongly against this, and astronomers now generally believe that comets really belong to the solar system, that their proper orbits are ellipses, and that in the case of those which fly off at such an angle that they can never return they must at some time have been pulled out of their original orbit by the influence of one of the planets.
To get a good idea of a really fine comet, until we have the opportunity of seeing one for ourselves, we cannot do better than look at this picture of a comet photographed in 1901 at the Cape of Good Hope. It is only comparatively recently that photography has been applied to comets. When Halley's comet appeared last time such a thing was not thought of, but when he comes again numbers of cameras, fitted up with all the latest scientific appliances, will be waiting to get good impressions of him.
CHAPTER IX
SHOOTING STARS AND FIERY BALLS
All the substances which we are accustomed to see and handle in our daily lives belong to our world. There are vegetables which grow in the earth, minerals which are dug out of it, and elementary things, such as air and water, which have always made up a part of this planet since man knew it. These are obvious, but there are other things not quite so obvious which also help to form our world. Among these we may class all the elements known to chemists, many of which have difficult names, such as oxygen and hydrogen. These two are the elements which make up water, and oxygen is an important element in air, which has nitrogen in it too. There are numbers and numbers of other elements perfectly familiar to chemists, of which many people never even hear the names. We live in the midst of these things, and we take them for granted and pay little attention to them; but when we begin to learn about other worlds we at once want to know if these substances and elements which enter so largely into our daily lives are to be found elsewhere in the universe or are quite peculiar to our own world. This question might be answered in several ways, but one of the most practical tests would be if we could get hold of something which had not been always on the earth, but had fallen upon it from space. Then, if this body were made up of elements corresponding with those we find here, we might judge that these elements are very generally diffused throughout the bodies in the solar system.
It sounds in the highest degree improbable that anything should come hurling through the air and alight on our little planet, which we know is a mere speck in a great ocean of space; but we must not forget that the power of gravity increases the chances greatly, for anything coming within a certain range of the earth, anything small enough, that is, and not travelling at too great a pace, is bound to fall on to it. And, however improbable it seems, it is undoubtedly true that masses of matter do crash down upon the earth from time to time, and these are called meteorites. When we think of the great expanse of the oceans, of the ice round the poles, and of the desert wastes, we know that for every one of such bodies seen to fall many more must have fallen unseen by any human being. Meteors large enough to reach the earth are not very frequent, which is perhaps as well, and as yet there is no record of anyone's having been killed by them. Most of them consist of masses of stone, and a few are of iron, while various substances resembling those that we know here have been found in them. Chemists in analyzing them have also come across certain elements so far unknown upon earth, though of course there is no saying that these may not exist at depths to which man has not penetrated.
A really large meteor is a grand sight. If it is seen at night it appears as a red star, growing rapidly bigger and leaving a trail of luminous vapour behind as it passes across the sky. In the daytime this vapour looks like a cloud. As the meteor hurls itself along there may be a deep continuous roar, ending in one supreme explosion, or perhaps in several explosions, and finally the meteor may come to the earth in one mass, with a force so great that it buries itself some feet deep in the soil, or it may burst into numbers of tiny fragments, which are scattered over a large area. When a meteor is found soon after its fall it is very hot, and all its surface has 'run,' having been fused by heat. The heat is caused by the friction of our atmosphere. The meteor gets entangled in the atmosphere, and, being drawn by the attraction of the earth, dashes through it. Part of the energy of its motion is turned to heat, which grows greater and greater as the denser air nearer to the earth is encountered; so that in time all the surface of the meteor runs like liquid, and this liquid, rising to a still higher temperature, is blown off in vapour, leaving a new surface exposed. The vapour makes the trail of fire or cloud seen to follow the meteor. If the process went on for long the meteor would be all dissipated in vapour, and in any case it must reach the earth considerably reduced in size.
Numbers and numbers of comparatively small ones disappear, and for every one that manages to come to earth there must be hundreds seen only as shooting stars, which vanish and 'leave not a wrack behind.' When a meteor is seen to fall it is traced, and, whenever possible, it is found and placed in a museum. Men have sometimes come across large masses of stone and iron with their surfaces fused with heat. These are in every way like the recognized meteorites, except that no eye has noted their advent. As there can be no reasonable doubt that they are of the same origin as the others, they too are collected and placed in museums, and in any large museum you would be able to see both kinds – those which have been seen to come to earth and those which have been found accidentally.
The meteors which appear very brilliant in their course across the sky are sometimes called fire-balls, which is only another name for the same thing. Some of these are brighter than the full moon, so bright that they cause objects on earth to cast a shadow. In 1803 a fiery ball was noticed above a small town in Normandy; it burst and scattered stones far and wide, but luckily no one was hurt. The largest meteorites that have been found on the earth are a ton or more in weight; others are mere stones; and others again just dust that floats about in the atmosphere before gently settling. Of course, meteors of this last kind could not be seen to fall like the larger ones, yet they do fall in such numbers that calculations have been made showing that the earth must catch about a hundred millions of meteors daily, having altogether a total weight of about a hundred tons. This sounds enormous, but compared with the weight of the earth it is very small indeed.
Now that we have arrived at the fact that strange bodies do come hurtling down upon us out of space, and that we can actually handle and examine them, the next question is, Where do they come from? At one time it was thought that they were fragments which had been flung off by the earth herself when she was subject to violent explosions, and that they had been thrown far enough to resist the impulse to drop down upon her again, and had been circling round the sun ever since, until the earth came in contact with them again and they had fallen back upon her. It is not difficult to imagine a force which would be powerful enough to achieve the feat of speeding something off at such a velocity that it passed beyond the earth's power to pull it back, but nothing that we have on earth would be nearly strong enough to achieve such a feat. Imaginative writers have pictured a projectile hurled from a cannon's mouth with such tremendous force that it not only passed beyond the range of the earth's power to pull it back, but so that it fell within the influence of the moon and was precipitated on to her surface! Such things must remain achievements in imagination only; it is not possible for them to be carried out. Other ideas as to the origin of meteors were that they had been expelled from the moon or from the sun. It would need a much less force to send a projectile away from the moon than from the earth on account of its smaller size and less density, but the distance from the earth to the moon is not very great, and any projectile hurled forth from the moon would cross it in a comparatively short time. Therefore if the meteorites come from the moon, the moon must be expelling them still, and we might expect to see some evidence of it; but we know that the moon is a dead world, so this explanation is not possible. The sun, for its part, is torn by such gigantic disturbances that, notwithstanding its vast size, there is no doubt sufficient force there to send meteors even so far as the earth, but the chances of their encountering the earth would be small. Both these theories are now discarded. It is believed that the meteors are merely lesser fragments of the same kind of materials as the planets, circling independently round the sun; and a proof of this is that far more meteorites fall on that part of the earth which is facing forward in its journey than on that behind, and this is what we should expect if the meteors were scattered independently through space and it was by reason of our movements that we came in contact with them. There is no need to explain this further. Everyone knows that in cycling or driving along a road where there is a good deal of traffic both ways the people we meet are more in number than those who overtake us, and the same result would follow with the meteors; that is to say, in travelling through space where they were fairly evenly distributed we should meet more than we should be overtaken by.
You remember that it was suggested the sun's fuel might be obtained from meteors, and this was proved to be not possible, even though there are no doubt unknown millions of these strange bodies circling throughout the solar system.
There are so many names for these flashing bodies that we may get a little confused: when they are seen in the sky they are meteors, or fire-balls; when they reach the earth they are called meteorites, and also aerolites. Then there is another class of the same bodies called shooting stars, and these are in reality only meteors on a smaller scale; but there ought to be no confusion in our thoughts, for all these objects are small bodies travelling round the sun, and caught by the earth's influence.
When you watch the sky for some time on a clear night, you will seldom fail to see at least one star flash out suddenly in a path of thrilling light and disappear, and you cannot be certain whether that star had been shining in the sky a minute before, or if it had appeared suddenly only in order to go out. The last idea is right. We must get rid at once of the notion that it would be possible for any fixed star to behave in this manner. To begin with, the fixed stars are many of them actually travelling at a great velocity at present, yet so immeasurably distant are they that their movement makes no perceptible difference to us. For one of them to appear to dash across the heavens as a meteor does would mean a velocity entirely unknown to us, even comparing it with the speed of light. No, these shooting stars are not stars at all, though they were so named, long before the real motions of the fixed stars were even dimly guessed at. As we have seen, they belong to the same class as meteors.