bannerbannerbanner
Информационные технологии в экологии и природопользовании
Информационные технологии в экологии и природопользовании

Полная версия

Настройки чтения
Размер шрифта
Высота строк
Поля
На страницу:
1 из 1

Александр Грачев, Владимир Орлов

Информационные технологии в экологии и природопользовании

Введение

Сегодня является несомненной необходимость широкого применения компьютерных технологий в различных областях человеческой деятельности, и в частности в охране окружающей среды. Наиболее значимыми областями являются геоинформационные системы, связанное с ними моделирование природных и техногенных процессов, а также системы подготовки, обработки и анализа данных.

Геоинформационные системы (ГИС) активно используются длярешениянаучныхипрактическихзадач, включаяпланирование и управление на городском, региональном и федеральном уровнях, комплексное многоаспектное изучение природно-экономического потенциала регионов, инвентаризацию природных ресурсов, проектирование транспортных магистралей и нефтепроводов, экологический мониторинг, обеспечение безопасности человека и т. д. Опыт использования позволяет констатировать широкий спектр и эффективность применения геоинформационных систем в профессиональной деятельности современного специалиста.

Развитие общества, усложнение его инфраструктуры требуют тщательного и продуманного управления ресурсами, овладения новыми средствами и методами обработки информации. Это методы обработки и анализа пространственной информации, методы оперативного решения задач управления, оценки и контроля изменяющихся процессов. Таким образом, существенным является следующий фактор: методы и средства обработки информации, обеспечивающие высокую наглядность отображения разнородной информации, мощность и удобство инструментария для анализа реальности, предоставляемые геоинформационными системами.

Взрыв интереса к геоинформационным системам, стремительность их внедрения, обширность сферы применения, включение их в ряд крупнейших государственных программ, стратегическое значение геоинформатики дают ей право претендовать на место одной из наиболее перспективных информационных технологий.

Особое место ГИС занимают в природоохранной деятельности, являясь основной системой поддержки принятия решений.

1. ГИС: определение, понятие

Геоинформационная система – это совокупность аппаратно-программных средств и алгоритмических процедур, предназначенных для сбора, ввода, хранения, обработки, математико-картографического моделирования и образного представления пространственно-координированных данных.

Также геоинформационной системой называют программный комплекс, в котором реализованы следующие функциональные возможности:

1. Ввод данных, например путем импорта из существующих наборов данных или цифрования источников.

2. Преобразование данных, включая конвертирование из одного формата в другой, трансформацию картографических проекций.

3. Хранение и управление данными в базах данных, включая ввод, хранение, манипулирование, обработку запросов (в том числе пространственных), поиск, выборку, сортировку, обновление, сохранение целостности, защиту данных и создание базы метаданных.

4. Картометрические операции (вычисление расстояний между объектами, длин кривых, периметров или площадей).

5. Операции оверлея (взаимодействие слоев с получением результирующего изображения, например вычитание одних объектов из других, добавление и т. п.).

6. Пространственный анализ (анализ зон видимости, соседства, создание цифровых моделей рельефа, буферных зон, анализ сетей и т. п.).

7. Пространственное моделирование и визуализация исходных данных или данных, полученных в результате обработки. Построение и использование моделей пространственных объектов, их взаимосвязей и динамики процессов (математикостатистический анализ пространственных размещений и временных рядов, межслойный корреляционный анализ взаимосвязей разнотипных объектов и т. п.). Построение трехмерных изображений местности, генерация линий, интерполяция высот и пр.

8. Проектирование и создание картографических изображений, графических, табличных или текстовых данных, их сохранение в электронном виде и вывод на печать.

9. Обслуживание процесса принятия решений, например построение моделей изменения ситуации во времени с учетом текущих значений, наличие готовых сценариев реагирования (для аварийных ситуаций) и т. д.

Геоинформационные системы могут рассматриваться по принадлежности к определенным классам программного обеспечения.

– Как системы управления ГИС предназначены для обеспечения принятия решений по оптимальному управлению землями и ресурсами, управлению транспортом, использованию водоемов и других пространственных объектов.

– Как автоматизированные информационные системы ГИС объединяют ряд технологий известных информационных систем типа систем автоматизированного проектирования (САПР), автоматизированных справочно-информационных систем (АСИС) и др.

– Как геосистемы ГИС включают технологии (в первую очередь технологии сбора информации) систем картографической информации (СКИ), автоматизированных систем картографирования (АСК), земельных информационных систем (ЗИС), автоматизированных кадастровых систем (АКС) и др.

– Как системы баз данных ГИС объединяют и базы обычной (цифровой или текстовой) информации, и графические базы.

– Как системы моделирования ГИС используют большое количество методов и процессов моделирования, применяемых в различных автоматизированных системах.

– Как системы получения проектных решений ГИС во многом применяют методы автоматизированного проектирования и решают ряд специальных задач, которые в типовом автоматизированном проектировании не встречаются.

– Как системы представления информации ГИС являются развитием автоматизированных систем документального обеспечения с использованием современных технологий мультимедиа.

1.1. Пространственные данные

Данные – это совокупность фактов и сведений, представленных в каком-либо формализованном виде (в количественном или качественном выражении) для их последующего использования в какой-либо области человеческой деятельности, например в науке. Это сведения дискретные и достаточно ценные для того, чтобы их сформулировать и точно зафиксировать. Такие описания должны быть пригодны для обработки автоматическими средствами (при возможном участии человека).

ГИС работают с пространственными данными. Пространственные данные – цифровые данные о пространственных объектах, включающие сведения об их местоположении и свойствах. Обычно состоят из двух взаимосвязанных частей: описание пространственного положения (координатные данные) и тематического содержания (атрибутивные данные). Пространственные данные составляют основу информационного обеспечения ГИС. Они могут быть получены путем традиционного картографирования, спутниковой и аэрофотосъемки, с помощью приемников данных глобальной системы позиционирования и т. д.

Природа географических данных:

– географическое положение пространственных объектов представляется 2-, 3- или 4-мерными координатами в географически соотнесенной системе координат (широта/долгота);

– свойства (атрибуты) являются описательной информацией. Атрибутивная информация может быть самой различной, например: для городского здания – количество этажей, год постройки, принадлежность определенному владельцу, организации, которые в этом здании находятся и т. д.; для реки – скорость течения, запасы рыбы, загрязненность и пр.;

– пространственные отношения определяют внутренние взаимоотношения между пространственными объектами (направление, расстояние, вложенность);

– временные характеристики представляются в виде сроков получения данных, они определяют их жизненный цикл, изменение свойств во времени, определяют актуальность данных.

Данные в геоинформационных системах хранятся в базах данных.

База данных (БД) – совокупность данных, организованных по определенным правилам, устанавливающим общие принципы описания, хранения данных и манипулирования ими. Хранение данных в БД обеспечивает централизованное управление, соблюдение стандартов, безопасность и целостность данных, сокращает избыточность и устраняет противоречивость данных. Создание БД и обращение к ней (по запросам) осуществляются с помощью системы управления базами данных (СУБД). Средствами СУБД поддерживаются различные операции с данными, включая ввод, хранение, манипулирование, обработку запросов, поиск, выборку, сортировку, обновление, сохранение целостности и защиту данных от несанкционированного доступа или потери. Обычно в ГИС используются реляционные СУБД, в которых пользователь воспринимает данные как таблицы.

Каждая реляционная таблица представляет собой двумерный массив и обладает следующими свойствами:

– каждый элемент таблицы – один элемент данных;

– все ячейки в столбце таблицы однородны, т. е. все элементы в столбце имеют один тип (числовой, символьный и т. д.);

– каждый столбец имеет уникальное имя;

– одинаковые строки в таблице отсутствуют;

– порядок следования строк и столбцов может быть произвольным.

Основополагающими элементами базы данных являются смоделированные элементы действительности.

Информационную основу ГИС составляют данные из следующих основных источников:

– Текстовые (отчеты экспедиций, статьи, книги) и статистические материалы (государственная статистика, данные переписи населения, справочники, каталоги и кадастры).

– Картографические источники (топографические, политические, административные и пр.). В геоинформатике эти карты служат для получения информации об объектах и их картографической привязки.

– Дистанционное зондирование. В настоящее время имеются снимки всей поверхности Земли, полученные со спутников дистанционного зондирования (космические снимки) с метровым разрешением. Эти данные могут быть получены не только в области видимого света, но и в других в электромагнитных диапазонах (инфракрасном, радио). Для получения снимков с большим масштабом используются данные аэрофотосъемки.

– Данные глобальной системы позиционирования (GPS, ГЛОНАСС). Приемники GPS дают возможность оперативно получать координаты.

1.2. Типовые вопросы

1. Место. Вопрос состоит в выяснении, что находится в данном месте. Место может быть определено по географическим координатам, по названию местности, по почтовому коду.

2. Условие. Где нечто находится? Для ответа требуется пространственный анализ. Например, необходимо определить место (одно или несколько), в котором удовлетворяются некоторые условия (например, нужно найти площадку более 2 000 м2 в пределах 100 м от дороги, подходящую для строительства).

Тенденции. Что изменилось? Вопрос представляет собой попытку определить временные изменения на определенной площади (например, как меняется картина загрязнения района на протяжении года).

Структуры. Какие пространственные структуры (распределения) существуют? Построение площадных объектов на основе дискретных точек.

Моделирование. Что, если..? Это вопрос ставят, если хотят, например, выяснить, как повлияет изменение или добавление фактора на общую структуру, например что произойдет, если к существующей сети добавить новую дорогу или если токсичное вещество просочится в грунтовые воды.

2. Классификация и структура ГИС

С точки зрения геоинформатики классификацию всех информационных систем можно представить в виде таксономического дерева:


Схема 1. Классификация информационных систем


По территориальному охвату различаются глобальные ГИС, национальные ГИС, зачастую имеющие статус государственных, региональные ГИС и локальные ГИС. ГИС различаются по предметной области информационного моделирования, например: муниципальные ГИС, природоохранные ГИС, инженерные и т. п. Проблемная ориентация ГИС определяется решаемыми в ней задачами (научными и прикладными), среди них инвентаризация ресурсов (в том числе кадастр), анализ, оценка, мониторинг, управление и планирование, поддержка принятия решений.

По другому признаку классификации в настоящее время в применяются 2 типа ГИС: топологические и нетопологические. Первые способны обрабатывать информацию, связанную с категориями соседства, включенности (различают правую и левую стороны объектов), вторые – нет. Пример первого типа – линейка продуктов ArcGIS компании ESRI и подобные ей системы. Пример второго типа – ГИС Mapinfo. Оба программных продукта также могут иллюстрировать другую дифференцировку – по области применения. Первые в основном решают задачи аналитического и мониторингового характера, поскольку обладают большим числом интегрированных функций, возможностью автоматизации процедур и даже создания экспертно-аналитических автоматизированных систем. Подобные Mapinfo программы более приспособлены для подготовки картографических материалов.

Логически и организационно во всех ГИС можно выделить несколько конструктивных подсистем, выполняющих определенные функции.


Схема 2. Функциональная структура ГИС


Система ввода представляет собой аппаратные средства (клавиатура, мышь, дигитайзер, сканер, приемник GPS и т. д.) и интерфейс ввода данных. Затем координатные и атрибутивные данные хранятся в соответствующих базах данных и по запросу систем управления и обработки и визуализации используются для осуществления всевозможных (математических, логических, аналитических, статистических) операций. Система вывода позволяет выводить результаты этих операций на монитор, печатать, передавать их через Интернет или сохранять для использования в других программах.

В историческом аспекте нарастание функциональных возможностей ГИС происходило по линии от инвентаризации через анализ и моделирование к управлению.

Основные требования, предъявляемые к ГИС:

1. Охват всех сторон информационного, программного, технического обеспечения, проявляющихся в процессе эксплуатации системы, возможность обработки массивов неоднородной пространственно-координированной информации и способность поддерживать базы данных для широкого класса географических объектов.

2. Комплексный характер системы. Основное преимущество геоинформационных технологий по сравнению с традиционными методиками состоит в возможностях совместного анализа больших групп параметров в их взаимной связи, что очень важно для изучения сложных географических явлений и процессов.

3. Открытость системы, обеспечивающая легкость модификаций и адаптации к новым условиям для поддержания ее на современном уровне не только разработчиками, но и пользователями.

3. Применение ГИС

ГИС используются для решения разнообразных задач, основные из которых можно сгруппировать следующим образом:

– обеспечение деятельности органов законодательной и исполнительной власти, силовых структур;

– обеспечение комплексного и отраслевого кадастра (земельного, водного, лесного, недвижимости и т. д.);

– поиск и рациональное использование природных ресурсов;

– территориальное, отраслевое, муниципальное планирование и управление;

– природопользование, мониторинг экологических ситуаций, оценка техногенных воздействий, экологическая экспертиза;

– научные исследования и образование;

– контроль условий жизни населения, здравоохранение и рекреация;

– картографирование (комплексное и отраслевое);

– использование в торговле и маркетинге, бизнесе.

Широко применяется ГИС в узковедомственных, потребительских сферах: транспорт, ценообразование, туризм, торговля, справочные услуги.

Таким образом, ГИС по назначениям и функциям является многоцелевой и ориентирована на обеспечение географическими и другими данными широкого круга организаций и граждан.

К потенциальным потребителям геоинформации относятся:

– структуры власти;

– планирующие органы;

– инспекции и контрольные органы;

– юридические и правоохранительные органы;

– природоохранные организации;

– архитектурно-планировочные и земельные службы города;

– организации, эксплуатирующие коммуникации или транспорт;

– научно-исследовательские и проектные институты;

– строительные организации;

– торговые организации;

– частные предприниматели и лица.

3.1. Применение ГИС в природоохранной деятельности

В ходе экологического мониторинга осуществляется сбор и совместная обработка данных, относящихся к различным природным средам, моделирование и анализ экологических процессов и тенденций их развития, использование данных при принятии решений по управлению качеством окружающей среды. Таким образом, в природоохранной деятельности ГИС являются мощным средством поддержки принятия управленческих решений.

Конец ознакомительного фрагмента.

Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

Конец ознакомительного фрагмента
Купить и скачать всю книгу
На страницу:
1 из 1