bannerbanner
Физика в играх
Физика в играх

Полная версия

Физика в играх

Настройки чтения
Размер шрифта
Высота строк
Поля
На страницу:
1 из 4

Бруно Донат

Физика в играх

Предисловие издательства

Как легко и увлекательно изучить такую сложную и интересную науку, как физика? Ваше знакомство с ней будет более полноценным и интересным, если вы начнете не со штудирования школьных учебников, а с проведения самостоятельных опытов и исследований. Книга Бруно Доната, немецкого физика, не только поможет вам в этом, но и даст некоторые начальные представления о методах физических исследований, о том, как изучаются физические явления и накапливаются новые знания.

Физика – наука экспериментальная, и все в ней строится на наблюдениях окружающих нас явлений. Именно поэтому автор книги знакомит юных читателей с главнейшими физическими законами природы путем занимательных игр и интересных опытов, а все необходимые приборы без особых усилий и затрат легко могут быть изготовлены самими читателями.

Пытливый от природы детский ум должен грамотно развиваться, детская любознательность и вдумчивое отношение к окружающим явлениям всячески поддерживаться. Особенно это важно в наш век, когда мы окружены чудесами не только природы, но и техники, развитие которой идет поистине семимильными шагами. Чем больше будут дети, играя, знакомиться с сущностью явлений природы, тем больше научных истин они усвоят, а последующее знакомство с наукой уже не покажется им трудным и скучным.

Со времени первого выхода книги на русском языке прошло более ста лет. Каждое издание дополняется новыми комментариями и пояснениями, призванными адаптировать текст книги к пониманию человека нашего века, для которого время творчества Б. Доната давно стало историей…

* * *

Увлекательные задания, предложенные автором, направлены на то, чтобы читатель сумел проникнуться духом науки, развить логическое мышление и заполнить пробелы в знании школьной физики.

Глава первая Опыты по механике

Рубль на листке бумаги. Положите на край стола открытку так, чтобы две трети ее выступали, а на открытку у самого края поставьте на ребро серебряный рубль или пятак (рис. 1). Конечно, это место стола не должно быть покрыто скатертью, и стол должен быть ровный, а то монета будет падать или скатываться. Возьмите затем линейку или какую-нибудь палочку и быстро ударьте по свешивающемуся концу открытки. Если удар будет сильный и быстрый, рубль не шелохнется, а открытка вылетит из-под него и упадет на пол.


Рис. 1


В этом опыте проявляется действие инерции. Всякое тело, находящееся в покое, само по себе не может прийти в движение: оно могло бы вечно лежать или висеть неподвижно. Поэтому говорят, что всякое покоящееся тело стремится вечно сохранять состояние покоя. Это свойство тел и называют инерцией.

В нашем опыте монета находится в покое. Удар по открытке приводит открытку в быстрое движение. Но связь между открыткой и монетой (в виде трения) так незначительна, что за короткое время удара движение открытки не может передаться монете, которая стремится сохранять состояние покоя.


Шар на шнурке. Если повесить (рис. 2) шар или гирю на очень тонком шнурке А, а снизу укрепить другой такой же шнурок Б и медленно потянуть его вниз, то оборвется верхний шнурок, на котором висит шар. Это понятно: к верхнему шнурку приложены и тяга руки, и вес шара. Но можно при желании разорвать не верхний шнурок, а нижний. Если, немного приподняв конец нижнего шнурка, затем быстро и сильно дернуть его вниз, то оборвется именно он, а не верхний. Почему это произойдет? Чтобы сообщить шару большую скорость в короткое время, нужна сила больше той, какую способен выдержать нижний шнурок. Шар вследствие инерции не успевает сдвинуться с места или сдвигается на такое маленькое расстояние, что верхний шнурок только чуть вытягивается и не успевает порваться. Итак, быстро дергая или медленно натягивая, мы можем по желанию обрывать верхний или нижний шнурки.


Рис. 2


Как сломать палку, висящую на петлях из папиросной бумаги. Еще интереснее следующий опыт.

Достаньте тонкую сухую палочку длиной примерно 1 метр. Склейте две петли из полосок папиросной бумаги и попросите двух товарищей подержать по столовому ножу лезвиями вверх, так чтобы на них можно было повесить бумажные петли. В эти петли вложите концы палки (рис. 3).


Рис. 3


Теперь возьмите тяжелую палку и как можно сильнее ударьте по середине висящей палки. Действие получится удивительное: папиросная бумага останется цела, несмотря на то что она непрочна и висит на лезвиях ножей, а крепкая палка будет сломана. Можно так напрактиковаться, что этот опыт будет удаваться даже с петлями из волоса.

Перелом палки – тоже проявление инерции покоящегося тела. На свойстве инерции основан и следующий старинный цирковой номер. Между двумя стульями, опираясь на их спинки только ногами и затылком, лежит человек. На груди его помещается большой кусок железа, который служит наковальней. На наковальне сильными ударами молота разбивают камни. Людям, незнакомым с инерцией, этот номер кажется удивительным.

Каким образом человек без всякого вреда для себя может переносить такие удары? На самом же деле все объясняется очень просто. Наковальня при сильных (но обязательно коротких) ударах молота не успевает прийти в движение и остается в покое. Кроме того, корпус висящего человека пружинит, подстилка под наковальней мягкая, да и камень, положенный на наковальню, тоже ослабляет силу удара. Оказывается, в этом поразительном явлении нет ничего таинственного.


Об инерции движущегося тела. Привяжите к шнурку камень и начните вращать его. Чем быстрее вы будете вращать камень, тем сильнее натянется шнурок. Выпустите шнурок из рук, и камень улетит далеко в сторону.

В этом явлении обнаруживается инерция движущегося тела. Если ударом ноги мы покатим по земле футбольный мяч, то, пробежав десяток-другой метров, он остановится. Более сильный удар заставит его пробежать большее расстояние. Но шар все же остановится. Если поле будет ровнее, шар пробежит еще дальше. По асфальту шар покатится совсем далеко. Но рано или поздно все же остановится. Почему? Потому что катиться шару мешают разные препятствия – шероховатости почвы или асфальта, сопротивление воздуха.

В идеальном случае – при полном отсутствии всяких сопротивлений – шар двигался бы без конца по прямой линии с одной и той же скоростью.

Так двигалось бы и всякое иное тело, не встречая сопротивления и не подвергаясь влиянию других тел. Изменению скорости или направления движения движущееся тело всегда оказывает сопротивление, и тем большее, чем больше эти изменения. В этом проявляется инерция движущихся тел.

Когда мы вращаем камень, привязанный к шнурку, то в каждой точке своего кругового пути он по инерции стремится двигаться по прямой линии, касательной к кругу (рис. 4). Но этому мешает шнурок, постоянно изменяющий направление движения камня. В результате камень через шнурок начинает тянуть нашу руку в сторону. Это действие вращающегося тела называется центробежной силой.


Рис. 4


Основываясь на инерции вращающихся тел, мы можем проделать ряд интересных опытов.


Вода не выливается из опрокинутой банки. Сделайте себе маленькое ведро из пустой консервной банки, пробив у ее верхнего края гвоздем две дырки и продев в них ручку из проволоки. К середине ручки привяжите бечевку Налейте в банку воды на 2/3 высоты. Взявшись за бечевку и раскачав банку, заставьте ее быстро описывать одну окружность за другой. При каждом обороте банка на одно мгновение, находясь в самой высокой точке своего пути, будет оказываться вверх дном, но ни капли воды из нее в это время не выльется.

Вода в банке, по инерции стремясь уйти от центра вращения, прижимается ко дну и потому не выливается. В том, что вода давит на дно даже тогда, когда банка бывает опрокинутой, нетрудно убедиться, пробив в дне маленькую дырочку. При вращении из нее будет непрерывно бить струя воды, даже тогда, когда банка будет вверх дном.


«Чертова петля». Иногда в цирке показывают такой интересный номер. На арене устраивают из досок дорожку в виде вертикальной петли. По ней сверху вниз спускается велосипедист. Разогнавшись, он проезжает по петле и на мгновение оказывается перевернутым вниз головой (рис. 5).


Рис. 5


Это кажется очень страшным. На самом деле за велосипедиста можно не опасаться. Его, как и воду во вращающемся ведерке, надежно прижимает к дорожке действие инерции. Такую петлю ее изобретатель, цирковой артист Нуазет, назвал «чертовой».

Вы можете легко сделать себе игрушечную «чертову петлю». Готовая петля показана на рис. 6, а размеры ее на рис. 7.


Рис. 6



Рис. 7


Вырежьте из плотной бумаги полосу шириной 3,5 сантиметра и длиной 50 сантиметров и два кружка диаметром 13 сантиметров. На полосе проведите карандашом две прямые линии на расстоянии 1 сантиметра от краев. По этим прямым полосу нужно аккуратно загнуть. Сделать это легче всего так. Наложите на полосу линейку точно по одной из прямых и подложенным под выступающий край бумаги ножом проведите вдоль линейки, пригибая край бумаги к ребру линейки. Этот прием показан на рис. 8, А. Так же сделайте и второй сгиб. Загнутые сантиметровые края полосы надрежьте ножницами приблизительно через каждые полсантиметра. Теперь смажьте края одного кружка клеем и, накладывая один за другим зубцы бумажной полосы, хорошенько приклейте ее к кружку. Клеить надо так, чтобы кружок оказался внутри петли.




Рис. 8


Когда клей подсохнет, вырежьте середину кружка, как раз по концам зубцов (рис. 8, Б). Таким же способом приклейте ко второму кружку другую сторону полоски и также вырежьте его середину. В том месте, где приклеено начало полоски, петлю нужно разрезать. Теперь ее можно так раздвинуть, чтобы она пошла по винтовой линии. Изготовленная полоска бумаги оказалась длиннее окружности кружка примерно на 10 сантиметров. Эту часть полоски нужно тоже закруглить. Вырежьте из бумаги еще один круг, такого же диаметра, как и первые два, разрежьте его на четыре части и вклейте четвертушки в готовую часть петли изнутри. К этой вклеенной части приклейте остаток полоски (рис. 8, В) и срежьте все лишнее.

Остается только к концу петли подклеить желобы. С одной стороны нужно подклеить желоб длиной 42 сантиметра, а с другой – 25 сантиметров. В том месте петли, где получились два желоба рядом, хорошо склейте их.

Теперь нужно испытать петлю до установки на подставку. Лучше всего катить в этой петле шарик. Шарик можно подобрать от старого шарикоподшипника. Можно скатать его из черного хлеба или из глины, только поточнее. Поставьте петлю на стол в том положении, в котором она будет закреплена, и попробуйте пустить шарик с конца более высокого желоба. Он должен быстро пробежать по всей петле и выскочить с короткого конца. Бывает, что шар доходит только до верха петли и оттуда срывается вниз.

Тут может быть несколько причин. Может быть, нужно повернуть петлю, чтобы конец желоба стал выше; хлебный шарик не пробегает петлю, если он высох и стал очень легким. Конечно, если шарик похож скорее на сливу или на грушу, не ждите хороших результатов. Но если вы сделали все правильно, петля должна заработать сразу. Испытав петлю, приклейте ее к фанерке и укрепите на бумажных стойках. Стойки не нужно делать деревянными; бумага, согнутая в виде буквы «П», отлично держит. Сделайте еще один кусочек желоба для подкоса, который дополнительно поддерживает длинный желоб петли.


Опыты с волчком. Кого в детстве не занимал волчок? Это забавная игрушка и в то же время очень интересный физический прибор.

В игрушечных магазинах можно купить тяжелый металлический волчок, укрепленный в металлическом кольце. Он запускается тонким и прочным шнурком. При быстром вращении волчок сохраняет вертикальное положение, если его поставить на один из шариков кольца, и даже оказывает сопротивление, когда его хотят повалить. При замедлении вращения волчок постепенно ложится на бок и наконец падает.

Быстро вращающийся тяжелый диск волчка заставляет его ось всегда оставаться параллельной первоначальному ее направлению. Поэтому волчок, не падая, передвигается по гладкой поверхности, например по стеклу, если нажимают палочкой на нижний шарик. Можно придать волчку такое положение, которое как будто противоречит всем законам тяжести. Волчок может вращаться в наклонном положении, он вертится на конце швейной иглы или, как канатный плясун, удерживается на тонкой нитке. Воткните швейную иголку в пробку бутылки острием вверх и поставьте приведенный во вращение волчок осторожно и точно на острие. Хорошо, если на шарике волчка имеется маленькое углубление, – оно мешает волчку соскочить с иглы. Если наклонить немного волчок, он опишет круг свободным концом.

Для второго опыта нужно, чтобы в одном из шариков волчка был прорез. Если его нет, сделайте сами тонким напильником. Привяжите нитку к ручке двери или к другому неподвижному предмету, возьмите другой конец в руки и поставьте вращающийся волчок прорезом на нитку. Он будет стоять неподвижно или скользить от одного конца к другому, если вы будете поднимать или опускать нитку (рис. 9, А). Если волчок очень быстро вращается, то нитку можно протянуть на довольно большом расстоянии, – волчок будет ходить через всю комнату.

Запущенный волчок можно спрятать в склеенный из бумаги кубик, тогда зрители не поймут, отчего жужжащий кубик стоит острием на конце пальца (рис. 9, Б).



Рис. 9


Замечательный опыт с волчком можно проделать и иначе.

К одному из шариков кольца привяжите прочную нитку. Незапущенный волчок будет, конечно, висеть вертикально, но, как только вы его запустите, он сможет вертеться в том положении, какое вы ему дадите, например как показано на рис. 9, В. Такая устойчивость направления оси вращения применяется во многих случаях. Например, в стволе ружей делают винтовые нарезки, чтобы заставить пулю быстро вращаться вокруг своей оси. Пуля во время полета сохраняет свою ось параллельной тому направлению, которое было у оси при вращении пули в стволе. Поэтому пуля летит всегда острым концом вперед.

В настоящее время волчками в особой подвеске пользуются как компасами. Запущенный волчок сам собою устанавливается так, что один конец его оси направляется на север, а другой – на юг. Конечно, такой волчок-компас нельзя запускать шнурком, а приходится непрерывно вращать электромотором.


О центре тяжести тела. Есть замечательная точка во всех телах: центр тяжести.

Центр тяжести находится у разных предметов в разных местах. Например, в шаре центр тяжести совпадает с геометрическим центром шара. Если шар лежит на горизонтальной плоскости (рис. 10, слева), то центр тяжести его находится как раз над точкой опоры шара на одной вертикали с нею. Шар при этом сам по себе никогда не может покатиться. Иначе обстоит дело, когда плоскость, на которой лежит шар, наклонна (рис. 10, справа). Центр тяжести не находится уже на одной вертикали с точкой опоры, и шар скатывается.



Рис. 10


Ванька-встанька. Ванька-встанька – старая и очень интересная игрушка. Сделать ее просто. Она может быть различной формы. Мы привыкли угадывать центр тяжести всякого тела и знаем, как поставить тело, чтобы оно не падало. Мы знаем, например, что нельзя поставить бутылку наклонно. «Секрет» ваньки-встаньки в том, что центр тяжести его всегда находится не там, где мы предполагаем. Поэтому ванька-встанька может принимать самые, казалось бы, неестественные положения, всегда возвращаясь к своему положению равновесия.

Маленького ваньку-встаньку можно сделать из кусочка бузины. Вырежьте бузину в форме маленькой бутылочки высотой сантиметра четыре (рис. 11, слева). Под дно бутылочки приклейте кусочек свинца, опиленный в виде полушария.


Рис. 11


Свинец можно сначала отрезать ножом, а затем обровнять напильником. Вместо свинца можно взять короткий гвоздь с большой полукруглой шляпкой (такими гвоздями часто прибивают обивку к мебели). Если бузинную бутылочку с тяжелым свинцовым дном окрасить, чтобы свинец, приклеенный снизу, был незаметен, – никому и в голову не придет, что центр тяжести ее расположен очень низко. Наша бутылочка, как бы мы ее ни положили, сейчас же примет вертикальное положение. Такое равновесие называется устойчивым.

Очень забавно, если вместо бутылочки сделать маленького человечка и раскрасить его яркими красками. Как бы вы ни наклоняли этого человечка, он, покачавшись из стороны в сторону, в конце концов станет вертикально.

Можно сделать легкий шар и с одной стороны его незаметно вставить грузик, не испортив наружного вида. Тогда центр тяжести окажется уже не в центре шара, и шар будет всегда стремиться лечь на тот бок, в котором заложен груз. Прикрепите к шару легкую куклу (рис. 11, справа), наполовину закрыв шар ее платьем. Получится надежный ванька-встанька.


Опыт с двойным конусом. Аккуратно сделайте из плотной бумаги два конуса с диаметром основания 6 сантиметров и высотой 7 сантиметров (рис. 12, Б). Потом склейте их основаниями и дайте хорошенько высохнуть. Еще лучше выточить такой двойной конус из дерева. Затем выпилите из фанеры две дощечки длиной по 30 сантиметров и высотой с одной стороны 2 сантиметра, а с другой – 4,5 сантиметра (рис. 12, В). Наклонные ребра дощечек должны быть совершенно ровными и гладкими (их нужно хорошо протереть стеклянной бумагой).


Рис. 12


Можно сделать дощечки любых других размеров, например длиннее, но разность высот коротких сторон должна быть обязательно меньше радиуса оснований конусов. У нас радиус основания конусов 3 сантиметра, а разность высот дощечек 4,5–2 = 2,5 сантиметра (меньше радиуса).

Сложите теперь дощечки узкими концами, раздвиньте их другие концы на длину конуса. Положите конус серединой на соединение дощечек, и вы увидите, что он, вращаясь и поднимаясь как бы в гору, докатится до раздвинутых широких концов дощечек. На первый взгляд это кажется чем-то особенным, но эта кажущаяся несообразность объясняется тем, что конус-то, собственно, не поднимается вверх, а падает, так как центр тяжести его, совпадающий с центром фигуры, при движении к раздвинутым концам дощечек опускается ниже, чем был при начале движения. Это можно рассмотреть на рис. 12, В. Если сдвинуть обе дощечки ближе, чтобы конус не опускался так глубоко, то он и не покатится кверху. Чтобы дощечки не раздвигались, прибейте к ним поперечную деревянную планку


Поставить кого-нибудь так, чтобы он не мог поднять ногу.

Этот опыт не требует никаких приспособлений. Поставьте кого-нибудь к ровной стене или к двери так, чтобы пятки касались стены. Центр тяжести прямостоящего человека окажется так далеко впереди, что равновесие сохраняется только благодаря носкам ног. В этом положении никто не может поднять ноги, если не согнет колено.


Посадить кого-нибудь так, чтобы он не мог встать. Вам, наверное, приходилось замечать, что при известном положении нашего тела бывает очень трудно или даже совсем невозможно встать со стула. Так, например, если вы положите сидящему на стуле человеку его руки на колени и попросите его вытянуть ноги вперед, то вы увидите, что человек, принявший такое положение, не может встать потому, что центр тяжести в данном случае лежит далеко позади и равновесие сохраняется только стулом. Когда же сидящий подтянет ноги и наклонит туловище вперед, то есть приблизит центр тяжести к ступням ног, то он легко встанет.


О центробежной силе. Привяжите к шнурку камень и начните его вращать. Вы сейчас же заметите, что чем быстрее вы будете вращать камень, тем сильнее будет натягиваться шнурок – это происходит оттого, что при вращении камня развивается сила, которая стремится отбросить его от центра вращения, то есть от руки. Физики называют эту силу центробежной. Уже молодой Давид имел понятие об этой силе, выпуская смертоносный камень из пращи в голову Голиафа. Вообще все тела, вращающиеся вокруг одной точки, имеют стремление удалиться от этой точки. Действительно ли это так? – спросит любознательный читатель. Ведь мы знаем, что планеты вращаются вокруг Солнца, а Луна вокруг Земли, почему же они не улетают в пространство? Действительно, это бы и случилось, если бы в природе не существовало силы противоположной центробежной, а именно силы центростремительной, которая притягивает тела друг к другу. И как мудро это устроено; если бы действовала только центростремительная сила, то Луна упала бы на Землю, но от этого ее удерживает равная ей центробежная сила!.. Эти две силы действовали всегда и будут действовать вечно как на нашей Земле, так и во всем необъятном мировом пространстве.


О давлении воздуха. Окружающий нас воздух, по-видимому столь легкий, прозрачный и невещественный, в действительности обладает тяжестью, или весом, и, как мы увидим ниже, весьма значительным, благодаря чему он и облегает плотно земной шар. Воздух можно взвесить так же, как куль муки или литр молока. Для этого прикрепляют к чувствительным весам стеклянный сосуд, вместимостью, например, 1 литр, и взвешивают его, а затем выкачивают воздух воздушным насосом, насколько это возможно, и снова взвешивают. Весы покажут, что сосуд стал легче на 1 грамм[1]. Значит, 1 литр воздуха весит приблизительно 1 грамм. Сколько же весит весь воздух или как велико давление воздуха на один квадратный сантиметр поверхности земли? Опыты показали, что давление это равняется 1 килограмму[2], отсюда нетрудно вывести чрезвычайно любопытное заключение, что поверхность человеческого тела, представляющая при среднем росте 15 ООО квадратных сантиметров, выносит давление в 15 495 килограммов. Вот какой страшный груз несет на себе каждый из нас! Его было бы слишком достаточно, чтобы совершенно раздавить нас, и если этого не происходит, то только благодаря тому, что давит он нас не только сверху. Воздух окружает нас со всех сторон, и давление его передается нашему телу во всех направлениях, вследствие чего уничтожается и его гибельное действие. Воздух, со всей силой своего давления, свободно проникает в самые глубокие внутренние полости нашего организма, вследствие чего мы испытываем изнутри то же самое давление, как и снаружи, и таким образом давления эти взаимно уравновешиваются.

Теперь поговорим о воздушном океане, на дне которого человек живет как рыба в воде. С незапамятных времен люди старались подняться и плавать в этом воздушном океане. Из древней истории мы знаем о полете на крыльях Дедала с сыном Икаром. Эта и другие подобные легенды доказывают, что мысль о не достигнутом пока еще свободном полете явилась у человека в глубокой древности. Идея об устройстве воздушного шара принадлежит иезуиту Франциску Лану (1670). Затем в Португалии в 1709 году был действительно сооружен воздушный шар; в 1783 году братья Монгольфье, владельцы бумажной фабрики во Франции, выпустили шар, наполненный нагретым воздухом. Их шар представлял собой продолговатый мешок, открытый снизу для наполнения нагретым воздухом. Впоследствии была прикреплена к этому шару плетеная корзина, а первыми воздухоплавателями в ней были баран, петух да утка. В октябре того же года впервые поднялся и завоевал царство эфира человек; это был Пилатр де Розье. Корзина была придумана физиком Шарлем, который затем применил в качестве подъемной силы, вместо нагретого воздуха, водород, а потом придумал разные приспособления, употребляемые и теперь, как, например, сетка, клапан для выпускания газа, балласт, якорь и т. п. В декабре 1783 года Шарль полетел в первый раз сам на шаре, наполненном водородом (который в 14 раз легче воздуха), и поднялся гораздо выше Розье. Эти два типа шаров и до настоящего времени носят названия их изобретателей – шары, наполняемые нагретым воздухом, называются монгольфьерами, наполняемые же газом – шарлиерами. Идя далее по пути усовершенствований, люди пришли к заключению, что самый главный недостаток шаров как летательных аппаратов – это то, что воздушные течения несут их произвольно и что спуститься в любой момент на землю можно, только выпустив газ, то есть шаром управлять невозможно. Современные шары содержат по несколько тысяч кубических метров газа; их делают из непроницаемой шелковой или бумажной ткани, снизу они снабжены особым рукавом для наполнения газом. Наполняются водородом или обыкновенным светильным газом – в зависимости от того, для какой цели и где снаряжается шар: газ дешевле и менее подвержен атмосферным влияниям, зато его подъемная сила почти в 7 раз менее водорода. При полетах для военных целей шары обыкновенно наполняются водородом, ибо подъемная сила шара должна быть настолько велика, чтобы могла поднять не только пассажиров в корзине, привязанной к веревочной сетке, в которой помещается шар, но и все необходимое для воздухоплавателей: продукты, оптические и метеорологические инструменты, балласт и др. Балласт – это мешки с песком; он необходим для того, чтобы регулировать подъем шара, так же как и воздушный клапан. Высыпая песок из мешка, аэронавт облегчает шар и поднимается выше, а выпуская газ через клапан, уменьшает подъемную силу шара и начинает спускаться.

На страницу:
1 из 4