bannerbanner
Фау-2. Сверхоружие Третьего рейха. 1930-1945
Фау-2. Сверхоружие Третьего рейха. 1930-1945

Полная версия

Настройки чтения
Размер шрифта
Высота строк
Поля
На страницу:
2 из 3

Обмениваясь бесчисленными рукопожатиями, я продолжал слышать отсчет, звуки которого доносились и сюда.

«Два девять один… два девять два… два девять три…»

Тон был все таким же высоким, как и несколько минут назад. Никто к нему не прислушивался; все были слишком возбуждены. Большую часть присутствующих устраивало, что старт прошел без сучка без задоринки. Мне пришлось призвать к тишине, поскольку эксперимент еще не завершился. Через несколько секунд ракете, которая мчится со скоростью порядка 4800 километров в час, предстоит снова войти в земную атмосферу. Стремительно возрастающее сопротивление воздуха затормозит ее до 3200 километров в час. Как часто мы обсуждали, что произойдет на этом самом опасном участке траектории! Мы до сих пор не знали, выдержит ли ракета такие перегрузки. Что произойдет, когда обшивка раскалится до 680 градусов, – эту цифру дали испытания в аэродинамической трубе: не слетит ли, как шелуха, металлическая кожа ракеты? не разлетится ли она на куски задолго до того, как коснется земли?

Вот оно! Высота тона отсчета резко упала, и теперь слабеющий голос звучал так, словно из воздушного шарика выходил воздух.

«Два девять четыре… два девять пять… два девять шесть…»

Удар!

Отсчет прекратился.

Глядя друг на друга, мы понимали: сейчас, и только сейчас можно утверждать, что наш эксперимент прошел успешно. Энергия соударения ракеты с землей составляла 1 800 000 килоджоулей, как у пятидесяти железнодорожных экспрессов, каждый массой 100 тонн, которые на скорости 100 километров в час одновременно врезались в препятствие.

Выслушав отчеты инженеров, мы поехали в измерительный корпус, чтобы подвести итоги эксперимента. На больших деревянных столах были разложены карты, на которых фиксировался курс ракеты, летевшей почти строго на восток через залив Пенемюнде и завершившей свой путь примерно в 30 километрах от побережья Померании. Кроме точки старта, на картах были на всем протяжении траектории отмечены места расположения измерительных пунктов и теодолитов, которые с помощью оптики отслеживали и фиксировали на пленку полет ракеты на идущем вверх первом участке траектории. По прибытии мы выслушали сообщение капитана авиации доктора Штейнхофа: точка удара, скорее всего, может быть найдена в 200 километрах отсюда. И сразу же после доклада Штейнхоф вылетел на разведку на «Мессершмите-111».

Поскольку мы всегда запускали ракеты в сторону моря, в каждой из них была емкость с краской, оставлявшая на воде огромное ярко-зеленое пятно, хорошо заметное с воздуха. Как только самолет, летящий на большой высоте, замечал такое пятно, наблюдатель радировал кораблям, сообщая, где можно его найти. Сделав примерную привязку пятна к какому-либо пункту на берегу, самолет возвращался в Пенемюнде.

Я припомнил, как Штейнхоф буквально налетел на меня. Весенним днем 1939 года я приехал на испытательную площадку номер 1 для проведения статических испытаний и уже собирался возвращаться, когда, к моему удивлению, меня внезапно остановил молодой человек лет двадцати с небольшим, который с выражением неподдельного энтузиазма схватил за руку и воскликнул:

– Господин Дорнбергер, вы должны взять меня! Я всецело ваш! Я хочу остаться!

Я впервые видел этого юного энтузиаста. Район испытательных стендов был едва ли не самым охраняемым участком на всем Пенемюнде. К счастью, подошел фон Браун и, узнав, в чем дело, прояснил ситуацию. Он встретил Штейнхофа, которого ждала хорошо оплачиваемая работа, на конференции по планерам в Дармштадтской высшей технической школе. Оценив его способности, пригласил в Пенемюнде, сказав, что первым делом тот должен осмотреться на месте. Штейнхоф тайком прокрался на испытательную площадку номер 1, где шли статические испытания двигателя с тягой 25 тонн. Испытания не могли не оказать потрясающего воздействия на любого гостя, и Штейнхоф также был поражен огромными размерами современного оборудования, свободой действий и перспективами, которые обещали ракеты. Приняв его в свою рабочую команду, мы никогда об этом не пожалели. Более того, он привел за собой целую вереницу толковых ученых, и его отдел стал одним из самых эффективных.

Оказавшись после солнечного света в полутьме помещения, я увидел, что ко мне спешит профессор Оберт, создатель современной теории ракетного движения. По происхождению Оберт был саксонцем из Трансильвании. Трагическая судьба и отсутствие признания практичности его идей помешали ему принять участие в развитии ракет дальнего радиуса действия, появление которых он предсказывал. Все мы понимали, в какой мере наша работа с самого начала зависела от его духа первопроходца. Когда Оберт поздравил меня, я мог лишь сказать, что в этот день, когда нам посчастливилось сделать первый шаг в космос, именно он должен принимать наши поздравления, потому что показал нам верный путь.

Тем же вечером после возвращения Штейнхофа я устроил небольшой праздник. Мне и в голову не приходило, что наша скромная вечеринка в этот радостный день 3 октября станет последним счастливым днем, что мы проведем вместе. Хорошо, что мы не могли предугадать ждущую нас судьбу. Вдохновленный удачным днем и будущими перспективами, я произнес небольшой панегирик в честь сплоченной группы самых близких коллег:

– В истории техники будет записано, что в первый раз конструкция, созданная руками человека, ракета весом пять с половиной тонн, покрыла расстояние двести километров, отклонившись по горизонтали от цели всего на четыре километра. Ваши имена, мои друзья и коллеги, будут навечно связаны с этим достижением. Мы разработали автоматику контроля за полетом. С точки зрения артиллерии ракета как оружие разрешает проблему веса, неустранимую у тяжелых орудий. Нам первым удалось, пользуясь принципами авиастроения, создать ракету, которая на реактивной тяге достигла скорости пять тысяч километров в час. Ускорение на взлете не более чем в пять раз превышало силу тяжести, что совершенно нормально для летательных аппаратов. Тем самым мы доказали, что вполне можно строить пилотируемые ракеты или самолеты, летающие на сверхзвуковых скоростях, – им будут свойственны продуманные формы и соответствующая тяга. Наша ракета, которую стабильно вела автоматика, достигла высоты, где никогда не бывала конструкция, созданная человеком. В точке отклонения наша ракета оказалась на высоте сто километров. Мы на сорок километров перекрыли мировой рекорд высоты, установленный снарядом ныне легендарной «парижской пушки».

Следующие достижения могут иметь решающее значение в истории техники: с помощью нашей ракеты мы прорвались в космос и в первый раз – отметьте это особо – использовали космическое пространство как мостик между двумя точками на земле; мы доказали, что реактивная тяга может использоваться в практике космических полетов. К земле, воде и воздуху ныне может быть добавлено бесконечное космическое пространство, как место будущих межконтинентальных перелетов, так что оно обретает большое политическое значение. Этот третий день октября 1942 года – первый в новой эре сообщений, первый день эры космических путешествий… Но пока длится война, нашей самой важной задачей остается быстрейшее совершенствование ракеты как оружия. Развитием ее возможностей, которые сейчас нельзя даже прогнозировать, мы будем заниматься в мирное время. А теперь первейшей задачей будет обеспечение точного попадания ракет в цель после полета в космосе…

Той ночью, когда сумерки сгустились над Пенемюнде, я вспоминал те двенадцать лет, на протяжении которых был главой армейского экспериментального ракетного центра. Это был нелегкий путь, полный трудов и изобретений. Мы прошли его и добились высот. Я думал, что, конечно, несмотря на три года войны, отныне мы в достатке будем получать все, что необходимо, – материалы, ресурсы, людскую силу, дабы как можно скорее начать массовое производство «А-4». Я ошибался.

Глава 2

Ракеты, версальский договор и управление вооружений

И полет в космос, и полет к звездам были давней мечтой человечества. Никто не знает, кому первому в голову пришла мысль, что средством ее осуществления может стать ракета. Есть свидетельства, что китайцы много столетий назад сделали пороховую ракету. Вряд ли можно с уверенностью утверждать, кто первым высказал идею об использовании вместо пороха жидкого высокоэнергетичного топлива для движения в безвоздушном пространстве. Одно не подлежит сомнению: любое стремление проникнуть в космос на ракете с жидкостными двигателями оставалось не более чем умозрительными размышлениями, пока общий прогресс техники не предоставил средства для его реализации. Существенным условием стало массовое производство алюминиевых сплавов; возможность производить и хранить в больших количествах жидкий кислород или же иметь большие запасы химических веществ, содержащих кислород; и наконец, создание высокоточного электрического и механического инструментария.

Встречая непонимание и терпя неудачи, появлялись и исчезали бесчисленные изобретатели. Некоторые оставляли интересные идеи, немногие пыталась воплощать их в металле. Их стараниями некоторые второстепенные проблемы близились к разрешению, но практически никому не удалось добиться полного успеха.

Как и автомобиль, первая большая ракета дальнего радиуса действия, способная добраться до космоса, была создана в Германии. Ее постигла точно такая же судьба, какая досталась расщеплению атома, – всего лишь ряд экспериментов должен был привести к мирному использованию ядерной энергии. И управляемая ракета, и атомная бомба – все эти изобретения пришлись на годы войны.

Едва на свет появилась артиллерия, военные стратеги стали мечтать о создании снаряда с большой дальностью полета. На фоне триумфальной карьеры авиации стратеги уже лелеяли мечты о таком носителе взрывчатки, который был бы дешевле в производстве и проще в обслуживании, чем, скажем, бомбардировщик. И «V-2» отвечала этим требованиям.

Версальский договор наложил на Германию ограничения, касающиеся производства любых видов вооружений. Производить оружие предписанных калибров можно было лишь для небольшой части вооруженных сил. Военные заводы могли существовать лишь в рамках жестких правил. Логическим следствием положения вещей стал тот факт, что управление вооружений сухопутных войск начало работать над развитием таких видов оружия, которые без нарушения договора могли бы увеличить боевую мощь немногих существующих сухопутных войск. Тем не менее международные связи тяжелой индустрии сделали практически невозможной разработку нового секретного оружия без того, чтобы другие страны не обеспокоились этими работами.

В тридцатые годы снова оживился выпуск литературы по ракетам, стали привлекать внимание эксперименты, которые укладывались в законодательные рамки. Управление вооружений сухопутных войск, особенно отдел баллистики и боеприпасов под руководством профессора Бекера (позже – генерала Бекера) начал проявлять интерес к этим идеям, что впоследствии привело к созданию исследовательского отдела. Ближе к концу 1929 года, ознакомившись с докладом, министр обороны принял решение изучить возможности использования ракет для военных целей.

Первоначальным заданием управления было всестороннее знакомство с созданием и принципами действия пороховых ракет, а затем – создание несложного, дешевого оружия, простого в производстве, которое могло обрушить град ракет, несущих мощную взрывчатку, по цели на ограниченной площади – в отдалении от 5 до 8 километров. Что же до ракет на жидком топливе, предстояло сначала изучить законы их движения, обеспечить безопасность их работы и претворить в практику теоретические разработки. Для изучения и экспериментов предстояло предварительно создать модель такой ракеты.

И весной 1930 года, завершив технические штудии, я был направлен в отдел баллистики управления вооружений сухопутных сил, как ассистент капитана фон Горстига. Этот отдел, куда в 1929 году была передана проблема развития ракет, на первых порах столкнулся с массой трудностей, в которых предстояло разбираться. Ни промышленность, ни технические учебные заведения не уделяли ровно никакого внимания изучению и созданию мощных ракет. Существовали лишь отдельные изобретатели, которые старались получить финансовую подпитку; их поддерживали более или менее способные сторонники. Чтобы заработать на жизнь, они были вынуждены устраивать публичные демонстрации своих достижений и писать газетные статьи, полные хвалебных преувеличений. Такое поведение, естественно, вызывало возражения со стороны университетских профессоров и признанных ученых. И более того, каждый отдельный изобретатель вел непримиримую борьбу с любым, кто также проявлял интерес к ракетам. До 1932 года в Германии в этой области знаний не проводилось никаких основательных научных исследований или экспериментальных работ. Например, до середины 1932 года было просто невозможно получить от Ракетенфлюгплац[1] ровно никаких отчетов о ходе испытаний и составе горючего при экспериментах.

Отдел вооружений был вынужден завязывать контакты с отдельными изобретателями, оказывать им финансовую поддержку и ждать результатов. Два года отдел тщетно ждал развития событий. Труды не приносили никаких результатов, не было никакого прогресса. В то же время существовала опасность, что из-за бездумной болтовни отдел получит известность как финансовый спонсор строительства ракет. Так что нам пришлось предпринять определенные шаги.

Поскольку мы не смогли заинтересовать тяжелую промышленность, не оставалось ничего иного, как создать собственную экспериментальную станцию для ракет на жидком топливе. Для этой цели был отведен принадлежащий отделу участок земли в Куммерсдорфе под Берлином. Мы хотели раз и навсегда покончить с ложными теориями, неоправданными обещаниями и хвастливыми фантазиями и прийти к выводам, имеющим твердый научный фундамент. Мы устали от беспочвенных проектов космических путешествий. Ценность вычисленной до шестого знака после запятой траектории полета до Венеры интересовала нас не больше, чем проблема перегрева и регенерации воздуха в герметичной кабине марсианского корабля. Мы хотели подойти к этапу строительства ракет, исходя из тщательной научной проработки. Мы не имели права впустую экспериментировать с ракетным двигателем. Мы должны были знать, какова скорость истечения ракетного топлива каждую секунду, какая смесь горючего дает наилучшие результаты, как справляться с температурой процесса горения, какие нужны типы вспрыскивания и размеры камеры сгорания, каковы должны быть оптимальные очертания дюз. Мы собирались установить основные закономерности, создать необходимые инструменты и изучить базовые условия. Но первым и главным условием было создание команды ракетчиков.

Сначала было непросто отвлечь моих юных сотрудников от их мечтаний о космосе и заставить заниматься внешне неэффектными и при этом тяжелыми исследовательскими и экспериментальными работами. Начали мы с создания ракетного двигателя тягой 295 килограммов. Мы хотели довести его до высокой степени совершенства, набраться опыта, свести воедино установленные законы и принципы и создать основу для дальнейшего конструирования.

Конечно, ошибки, которые мы тогда допускали, сегодня могут вызвать улыбку. Но мы вступали в новую область техники полные свободы невежества и учились на досадных неудачах, приобретая горький опыт.

Я никогда не испытывал искушения выяснять, у кого первого родилась та или иная правильная идея. Пусть за приоритет борются те, у кого есть время, энергия и деньги. Я думаю, что, скорее всего, любой толковый изобретатель, экспериментатор или инженер, который при таких же условиях сталкивается с проблемой, придерживаясь научного подхода и старательно работая, добьется практически тех же результатов. Идея созрела. Основные условия были сформулированы.

Технический прогресс человечества обязан не только людям с великими идеями. Столь же часто он зависит от тех, кто, будучи исполнен неколебимой веры и неиссякающей энергии, трудится над воплощением этих идей. История техники учит нас, что всем, кто вступал на этот путь, приходилось бороться с сомнениями, недоверием и насмешками. А вот когда наступал час успеха, на сцену высыпали сотни и тысячи тех, кто тщился доказать, что идея украдена, а достижения обязаны чьим-то ранним трудам.

Нет смысла спорить с этой публикой. Они никогда не поймут, сколько приходится прикладывать серьезных и тяжелых трудов, прежде чем появятся первые успехи. В той же мере они не способны увидеть, что в технике первое практическое воплощение идеи всегда должно нести в себе ошибки и всегда приходится начинать с самого начала, ухватившись за крохотную удачу, от которой можно идти дальше. В современной технике конечный продукт никогда не бывает первым же плодом стараний отдельной личности или небольшой группы. Он всегда продукт нескольких лет интенсивной работы выдающихся ученых, инженеров и техников.

С моей точки зрения, бессмертные заслуги великих людей в технике заключены в их способностях практически демонстрировать своим последователям новые пути, новые области приложения сил. И никто не должен забывать, глядя, например, на современный дизель мощностью в несколько тысяч лошадиных сил, какой верой надо было обладать, сколько трудов приложить, чтобы впервые услышать в Аугсбурге ровный рабочий ритм дизеля.

Можно сказать, что в истории техники было всего три в самом деле великих изобретения, которые решительно повлияли или еще повлияют на тысячелетия истории человечества. Это колесо, которым человек завоевал землю; винт, с помощью которого он подчинил себе море и воздух, и реактивное движение, которое поможет человеку завоевать космос и отправиться к звездам.

Первые годы нашей деятельности ярко запечатлелись у меня в памяти. Это были годы созидания и радости успеха, годы напряженной работы среди неразлучных друзей. И в то же время это были годы, когда приходили часы глубокого и непроглядного отчаяния от поражений, когда приходилось вести бесконечные сражения с человеческой глупостью и неверием.

Глава 3

Первый шаг: экспериментальная станция «Куммерсдорф-Запад»

Экспериментальная станция «Запад» была расположена между двумя артиллерийскими полигонами Куммерсдорфа, примерно в 2,7 километра к югу от Берлина, на прогалине в редком сосновом лесу провинции Бранденбург. Уже существующий там испытательный стенд для пороховых ракет мы первым делом дополнили еще двумя зданиями для нового начинания, а затем появился и первый в Германии испытательный стенд для работы с ракетами на жидком топливе, который был полностью оборудован всей известной измерительной техникой. Там же мы разместили кабинеты, чертежную, отдел измерений, фотолабораторию и небольшую мастерскую. Расписание работ мы набросали после дискуссии, которая длилась несколько часов. Все те месяцы, что последовали после устройства на новом месте, мы не разгибаясь сидели над чертежными досками или работали у токарных станков. Каждую неделю, а то и каждый день возникали какие– либо накладки, но в конце концов мы были готовы провести первое испытание.

Холод пробирал даже сквозь толстые подошвы моих сапог для верховой езды. Я отчаянно мерз в короткой меховой куртке. 21 декабря 1932 года стояла ясная морозная ночь. Я пристроился вплотную за еловым стволом. Едва только я делал попытку сменить положение, как меня останавливал окрик:

– В укрытие! Все готово к зажиганию!

«Укрытие» – это было слишком громко сказано. Я с трудом представлял, что тонкий еловый ствол 10 сантиметров толщиной станет надежной защитой от взрыва: я находился всего в 10 метрах от нашего первого испытательного стенда. Мы закончили его всего несколько дней назад и неподдельно им гордились. Три бетонных стены 5,5 метра длиной и 3,6 метра вышиной располагались в форме буквы «U», а четвертую стену заменяли раздвижные металлические двери. Деревянная крыша была покрыта толем, который при необходимости скатывался в рулоны с помощью небольшой лебедки.

Когда и двери и крыша задраивались, возникало просторное испытательное помещение, защищенное от внешних воздействий. В задней стене были амбразуры, которые вели в измерительную камеру и служили для наблюдений. Эта таинственная комната представляла собой невообразимый хаос синих, красных, зеленых и желтых труб и кабелей для измерений, для подачи и проверки ракетного топлива и водорода под высоким давлением; здесь же было обилие клапанов, датчиков и регистрирующей аппаратуры. На первый взгляд беспорядок просто ошеломлял. Но специалисты, конечно, считали, что тут все на месте.

По углам задней стены на уровне глаз размещались два отверстия за зеркальными стеклами, чтобы испытатели могли наблюдать за работой ракетных двигателей. В центре той же стены было два металлических маховичка, стержни которых шли через стену к клапанам. Все свободное пространство было заполнено тумблерами, выключателями, встроенными циферблатами, электроинструментами, рядами датчиков и другой аппаратуры, связанной с топливными баками и с самыми важными точками камеры сгорания, процессы в которых надо было тщательно отслеживать.

Мы собирали данные о скорости истечения топлива, о его давлении и так далее – во всей системе, в емкостях, в трубопроводах, в охлаждающих рубашках, во многих точках камеры сгорания, ибо нам было нужно зафиксировать параметры изменения температуры, чтобы определить наилучший состав горючей смеси и режим ее подачи.

Зеленые стальные баллоны, где под высоким давлением хранился водород, стояли в ряд у боковой стены. Мощные электролампы заливали слепящим светом узкое помещение длиной всего 3,6 метра. От пары электрорадиаторов, примостившихся под боковыми столами, шло уютное тепло.

Крыша над испытательным стендом была раздвинута, двери открыты настежь. В потоке света от прожекторов я видел очертания стенда, на котором размещался грушеобразный серебристо-серый ракетный двигатель. Его кожух, сделанный из дюралюминия, был в длину примерно 50 сантиметров. Он стоял вертикально с обращенными вниз дюзами. К камере сгорания были подведены четыре трубы. Они отводили мощь выброса к пружине, связанной тонкими стальными проводами на бегунках, которые, в свою очередь, вели к аппаратуре измерения давления, что размещалась за стенкой. Камера сгорания с ее круглой головкой и конусообразными дюзами была рассчитана на тягу 295 килограммов.

С правой стороны измерительного помещения на пружинах покачивался большой сферический, покрытый изморозью алюминиевый контейнер с жидким кислородом. Трубки, соединяющие его с двигателем, тоже заиндевели, и от них поднималось холодное туманное облачко. Слева примостился такой же контейнер с 75-процентным этиловым спиртом. Его содержимое шло по двум разветвляющимся трубкам. Аппаратура выдавала графики потребления горючего во время работы двигателя.

Сам двигатель имел двойные стенки. Между ними сверху донизу для охлаждения активно циркулировал спирт. Нагреваясь до 70 градусов, он поступал в головку внутренней камеры через узкую сетку отверстий. Здесь он смешивался с жидким кислородом, который вспрыскивался через размещенный в центре медный разбрызгиватель, имевший форму гриба, повернутого вниз шляпкой с массой мелких отверстий. Струйки, которые подавались под давлением в несколько атмосфер, вылетали с большой силой, распылялись и смешивались, что увеличивало скорость горения.

Под дюзами в металлической плите пола зияло темное отверстие, куда отводилась мощь реактивной струи. Рассекатель из огнеупорного кирпича разделял ее и отбрасывал налево и направо под углом 90 градусов. Струя устремлялась по туннелю, выложенному кирпичом, в две узкие вертикальные шахты – за внешние стены здания и дальше на открытый воздух.

В контрольной рубке инженер Вальтер Ридель стоял на узкой деревянной решетке, вцепившись в два больших штурвала. Когда давление в сферических контейнерах достигало необходимой величины, поворот штурвалов открывал два главных клапана, горючее смешивалось в камере сгорания. Ридель неотрывно наблюдал за датчиками. Рядом с ним механик Грюнов легкими движениями руки на штурвале контролировал поступление водорода из баллонов высокого давления к клапанам баков. Перед его глазами колебались стрелки датчиков, показывавших давление в контейнерах.

У главных дверей испытательного стенда, продрогший до мозга костей и топая ногами, чтобы согреться, стоял фон Браун. Он держал 3,5-метровый стержень с привязанной к нему банкой керосина. Ридель крикнул из-за стенки, что давление достигло нужной величины, и Браун, запалив свою гигантскую спичку, был готов поднести пламя под дюзы.

Внезапно из-под дюз появилось овальное белое облако и медленно опустилось на землю. После него брызнула прозрачная струйка спирта. Ридель открыл клапаны, и шест фон Брауна с пламенем на конце соприкоснулся с облаком испарений.

Раздалось шипение, треск и – трах!

Взметнулись клубы дыма. Кверху метнулся одинокий язычок пламени и исчез. Кабели, панели, листы металла, куски стали и алюминия со свистом взлетели в воздух. Погасли прожектора.

На страницу:
2 из 3