bannerbanner
Метрология, стандартизация и сертификация
Метрология, стандартизация и сертификация

Полная версия

Метрология, стандартизация и сертификация

Язык: Русский
Год издания: 2009
Добавлена:
Настройки чтения
Размер шрифта
Высота строк
Поля

В. А. Бисерова, Н. В. Демидова, А. С. Якорева

Метрология, стандартизация и сертификация.

1. Предмет и задачи метрологии

Под метрологией подразумевается наука об измерениях, о существующих средствах и методах, помогающих соблюсти принцип их единства, а также о способах достижения требуемой точности.

Происхождение самого термина «метрология» возводят к двум греческим словам: metron, что переводится как «мера», и logos – «учение». Бурное развитие метрологии пришлось на конец ХХ в. Оно неразрывно связано с развитием новых технологий. До этого метрология была лишь описательным научным предметом. Таким образом, можно сказать, что метрология изучает:

1) методы и средства для учета продукции по следующим показателям: длине, массе, объему, расходу и мощности;

2) измерения физических величин и технических параметров, а также свойств и состава веществ;

3) измерения для контроля и регулирования технологических процессов.

Выделяют несколько основных направлений метрологии:

1) общая теория измерений;

2) системы единиц физических величин;

3) методы и средства измерений;

4) методы определения точности измерений;

5) основы обеспечения единства измерений, а также основы единообразия средств измерения;

6) эталоны и образцовые средства измерений;

7) методы передачи размеров единиц от образцов средств измерения и от эталонов рабочим средствам измерения.

Следует различать также объекты метрологии: 1) единицы измерения величин;

2) средства измерений;

3) методики, используемые для выполнения измерений и т. д.

Метрология включает в себя: во-первых, общие правила, нормы и требования, во-вторых, вопросы, нуждающиеся в государственном регламентировании и контроле. И здесь речь идет о:

1) физических величинах, их единицах, а также об их измерениях;

2) принципах и методах измерений и о средствах измерительной техники;

3) погрешностях средств измерений, методах и средствах обработки результатов измерений с целью исключения погрешностей;

4) обеспечении единства измерений, эталонах, образцах;

5) государственной метрологической службе;

6) методике поверочных схем;

7) рабочих средствах измерений.

В связи с этим задачами метрологии становятся: усовершенствование эталонов, разработка новых методов точных измерений, обеспечение единства и необходимой точности измерений.

2 Классификация измерений

Классификация средств измерений может проводиться по следующим критериям.

1. По характеристике точности измерения делятся на равноточные и неравноточные.

Равноточными измерениями физической величины называется ряд измерений некоторой величины, сделанных при помощи средств измерений (СИ), обладающих одинаковой точностью, в идентичных исходных условиях.

Неравноточными измерениями физической величины называется ряд измерений некоторой величины, сделанных при помощи средств измерения, обладающих разной точностью, и (или) в различных исходных условиях.

2. По количеству измерений измерения делятся на однократные и многократные.

3. По типу изменения величины измерения делятся на статические и динамические.

Статические измерения – это измерения постоянной, неизменной физической величины.

Динамические измерения – это измерения изменяющейся, непостоянной физической величины.

4. По предназначению измерения делятся на технические и метрологические.

Технические измерения – это измерения, выполняемые техническими средствами измерений.

Метрологические измерения – это измерения, выполняемые с использованием эталонов.

5. По способу представления результата измерения делятся на абсолютные и относительные.

Абсолютные измерения – это измерения, которые выполняются посредством прямого, непосредственного измерения основной величины и (или) применения физической константы. Относительные измерения – это измерения, при которых вычисляется отношение однородных величин, причем числитель является сравниваемой величиной, а знаменатель – базой сравнения (единицей).

6. По методам получения результатов измерения делятся на прямые, косвенные, совокупные и совместные.

Прямые измерения – это измерения, выполняемые при помощи мер, т. е. измеряемая величина сопоставляется непосредственно с ее мерой. Примером прямых измерений является измерение величины угла (мера – транспортир).

Косвенные измерения – это измерения, при которых значение измеряемой величины вычисляется при помощи значений, полученных посредством прямых измерений.

Совокупные измерения – это измерения, результатом которых является решение некоторой системы уравнений. Совместные измерения – это измерения, в ходе которых измеряется минимум две неоднородные физические величины с целью установления существующей между ними зависимости.

3. Основные характеристики измерений

Выделяют следующие основные характеристики измерений:

1) метод, которым проводятся измерения;

2) принцип измерений;

3) погрешность измерений;

4) точность измерений;

5) правильность измерений;

6) достоверность измерений.

Метод измерений – это способ или комплекс способов, посредством которых производится измерение данной величины, т. е. сравнение измеряемой величины с ее мерой согласно принятому принципу измерения.

Существует несколько критериев классификации методов измерений.

1. По способам получения искомого значения измеряемой величины выделяют:

1) прямой метод (осуществляется при помощи прямых, непосредственных измерений);

2) косвенный метод.

2. По приемам измерения выделяют:

1) контактный метод измерения;

2) бесконтактный метод измерения.

Контактный метод измерения основан на непосредственном контакте какой-либо части измерительного прибора с измеряемым объектом.

При бесконтактном методе измерения измерительный прибор не контактирует непосредственно с измеряемым объектом.

3. По приемам сравнения величины с ее мерой выделяют:

1) метод непосредственной оценки;

2) метод сравнения с ее единицей.

Метод непосредственной оценки основан на применении измерительного прибора, показывающего значение измеряемой величины.

Метод сравнения с мерой основан на сравнении объекта измерения с его мерой.

Принцип измерений – это некое физическое явление или их комплекс, на которых базируется измерение.

Погрешность измерения – это разность между результатом измерения величины и настоящим (действительным) значением этой величины.

Точность измерений – это характеристика, выражающая степень соответствия результатов измерения настоящему значению измеряемой величины.

Правильность измерения – это качественная характеристика измерения, которая определяется тем, насколько близка к нулю величина постоянной или фиксировано изменяющейся при многократных измерениях погрешности (систематическая погрешность).

Достоверность измерений – это характеристика, определяющая степень доверия к полученным результатам измерений.

4 Понятие о физической величине Значение систем физических единиц

Физическая величина является понятием как минимум двух наук: физики и метрологии. По определению физическая величина представляет собой некое свойство объекта, процесса, общее для целого ряда объектов по качественным параметрам, отличающееся, однако, в количественном отношении (индивидуальная для каждого объекта). Есть целый ряд классификаций, созданных по различным признакам. Основными из них является деления на:

1) активные и пассивные физические величины – при делении по отношению к сигналам измерительной информации. Причем первые (активные) в данном случае представляют собой величины, которые без использования вспомогательных источников энергии имеют вероятность быть преобразованными в сигнал измерительной информации. А вторые (пассивные) представляют собой такие величины, для измерения которых нужно использовать вспомогательные источники энергии, создающие сигнал измерительной информации;

2) аддитивные (или экстенсивные) и неаддитивные (или интенсивные) физические величины – при делении по признаку аддитивности. Считается, что первые (аддитивные) величины измеряются по частям, кроме того, их можно точно воспроизводить с помощью многозначной меры, основанной на суммировании размеров отдельных мер. А вторые (неаддитивные) величины прямо не измеряются, так как они преобразуются в непосредственное измерение величины или измерение путем косвенных измерений. В 1791 г. Национальным собранием Франции была принята первая в истории система единиц физических величин. Она представляла собой метрическую систему мер. В нее входили: единицы длин, площадей, объемов, вместимостей и веса. А в их основу были положены две общеизвестные ныне единицы: метр и килограмм.

В основу своей методики ученый заложил три основные независимые друг от друга величины: массу, длину, время. А в качестве основных единиц измерения данных величин математик взял миллиграмм, миллиметр и секунду, поскольку все остальные единицы измерения можно с легкостью вычислить с помощью минимальных. Так, на современном этапе развития выделяют следующие основные системы единиц физических величин:

1) система СГС (1881 г.);

2) система МКГСС (конец XIX в.);

3) система МКСА (1901 г.)

5. Международная система единиц

Решениями Генеральной конференции по мерам и весам приняты такие определения основных единиц измерения физических величин:

1) метр считается длинной пути, который проходит свет в вакууме за 1/299 792 458 долю секунды;

2) килограмм считается приравненным к существующему международному прототипу килограмма;

3) секунда равна 919 2631 770 периодам излучения, соответствующего тому переходу, который происходит между двумя так называемыми сверхтонкими уровнями основного состояния атома Cs133;

4) ампер считается мерой той силы неизменяющегося тока, вызывающего на каждом участке проводника длиной 1 м силу взаимодействия при условии прохождения по двум прямолинейным параллельным проводникам, обладающим такими показателями, как ничтожно малая площадь кругового сечения и бесконечная длина, а также расположение на расстоянии в 1 м друг от друга в условиях вакуума;

5) кельвин равен 1/273,16 части термодинамической температуры, так называемой тройной точки воды;

6) моль равен количеству вещества системы, в которую входит такое же количество структурных элементов, что и в атомы в С12 массой 0,01 2 кг.

Кроме того, Международная система единиц содержит две достаточно важные дополнительные единицы, необходимые для измерения плоского и телесного углов. Так, единица плоского угла – это радиан, или сокращенно рад, представляющий собой угол между двух радиусов окружности, длина дуги между которыми равняется радиусу окружности. Если речь идет о градусах, то радиан равен 57°17' 48''. А стерадиан, или ср, принимаемый за единицу телесного угла, представляет собой, соответственно, телесный угол, расположение вершины которого фиксируется в центре сферы, а площадь, вырезаемая данным углом на поверхности сферы, равна площади квадрата, сторона которого равна длине радиуса сферы. Другие дополнительные единицы СИ используются для формирования единиц угловой скорости, а также углового ускорения и т. д. Радиан и стерадиан используются для теоретических построений и расчетов, поскольку большая часть значимых для практики значений углов в радианах выражаются трансцендентными числами. К внесистемным единицам относятся следующие:

1) за логарифмическую единицу принята десятая часть бела, децибел (дБ);

2) диоптрия – сила света для оптических приборов;

3) реактивная мощность – Вар (ВА);

4) астрономическая единица (а. е.) – 149,6 млн км;

5) световой год, под которым понимается такое расстояние, которое луч света проходит за 1 год;

6) вместимость – литр;

7) площадь – гектар (га).

Существуют также единицы, вообще не входящие в СИ. Это в первую очередь такие единицы, как градус и минута. Все остальные единицы считаются производными, которые согласно Международной системе единиц образуются с помощью самых простейших уравнений с использованием величин, числовые коэффициенты которых приравнены к единице. Если в уравнении числовой коэффициент равен единице, производная единица называется когерентной.

6. Физические величины и измерения

Объектом измерения для метрологии, как правило, являются физические величины. Физические величины используется для характеристики различных объектов, явлений и процессов. Разделяют основные и производные от основных величины. Семь основных и две дополнительных физических величины установлены в Международной системе единиц. Это длина, масса, время, термодинамическая температура, количество вещества, сила света и сила электрического тока, дополнительные единицы – это радиан и стерадиан. У физических величин есть качественные и количественные характеристики.

Качественное различие физических величин отражается в их размерности. Обозначение размерности установлено международным стандартом ИСО, им является символ dim*.

Количественная характеристика объекта измерения – это его размер, полученный в результате измерения. Самый элементарный способ получить сведения о размере определенной величины объекта измерения – это сравнить его с другим объектом. Результатом такого сравнения не будет точная количественная характеристика, оно позволит лишь выяснить, какой из объектов больше (меньше) по размеру. Сравниваться могут не только два, но и большее число размеров. Если размеры объектов измерения расположить по возрастанию или по убыванию, то получится шкала порядка. Процесс сортировки и расположения размеров по возрастанию или по убыванию по шкале порядка называется ранжированием. Для удобства измерений определенные точки на шкале порядка фиксируются и называются опорными, или реперными точками. Фиксированным точкам шкалы порядка могут ставиться в соответствие цифры, которые часто называют баллами.

Конец ознакомительного фрагмента.

Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

Конец ознакомительного фрагмента
Купить и скачать всю книгу