Полная версия
Наука о данных
Развитие теории вероятностей и статистики продолжилось в XX в. Карл Пирсон разработал современные методы проверки гипотез, а Рональд Фишер – статистические методы для многомерного анализа и предложил идею оценки максимального правдоподобия статистических заключений как метод, позволяющий делать выводы на основе относительной вероятности событий. Работа Алана Тьюринга во время Второй мировой войны привела к изобретению компьютера, который оказал исключительно сильное влияние на статистику, позволив совершать существенно более сложные вычисления. В течение 1940-х гг. и в последующие десятилетия были разработаны важные вычислительные модели, которые до сих пор широко применяются в науке о данных. В 1943 г. Уоррен Мак-Каллок и Уолтер Питтс предложили первую математическую модель нейронной сети. В 1948-м Клод Шеннон опубликовал статью под названием «Математическая теория связи» и тем самым основал теорию информации. В 1951 г. Эвелин Фикс и Джозеф Ходжес предложили модель дискриминантного анализа (который сейчас более известен как теория распознавания образов), ставшую основой современных алгоритмов ближайших соседей. Послевоенное развитие сферы достигло кульминации в 1956 г. с появлением отрасли искусственного интеллекта на семинаре в Дартмутском колледже. Даже на этой ранней стадии ее развития термин «машинное обучение» уже начал использоваться для описания программ, которые давали компьютеру возможность учиться на основе данных. В середине 1960-х гг. были сделаны три важных вклада в машинное обучение. В 1965 г. Нильс Нильсон опубликовал книгу «Обучающиеся машины»[1], в которой показано, как можно использовать нейронные сети для обучения линейных моделей классификации. Через год Хант, Марин и Стоун разработали систему концептуального обучения, породившую целое семейство алгоритмов, которые, в свою очередь, привели к появлению деревьев решений на основе данных нисходящего порядка. Примерно в то же время независимые исследователи разрабатывали и публиковали ранние версии метода k-средних, который теперь рутинно используется для сегментации клиентских данных.
Область машинного обучения лежит в основе современной науки о данных, поскольку она предоставляет алгоритмы, способные автоматически анализировать большие наборы данных для выявления потенциально интересных и полезных закономерностей. Машинное обучение и сегодня продолжает развиваться и модернизироваться. В число наиболее важных разработок входят ансамблевые методы, прогнозирование в которых осуществляется на основе набора моделей, где каждая модель участвует в каждом из запросов, а также дальнейшее развитие нейронных сетей глубокого обучения, имеющих более трех слоев нейронов. Такие глубокие слои в сети способны обнаруживать и анализировать отображения сложных атрибутов (состоящие из нескольких взаимодействующих входных значений, обработанных более ранними слоями), которые позволяют сети изучать закономерности и обобщать их для всех входных данных. Благодаря своей способности исследовать сложные атрибуты сети глубокого обучения лучше других подходят для многомерных данных – именно они произвели переворот в таких областях, как машинное зрение и обработка естественного языка.
Как уже упоминалось в историческом обзоре баз данных, начало 1970-х гг. ознаменовало приход современной технологии с реляционной моделью данных Эдгара Кодда и последующий взрывной рост генерации данных и их хранения, который в 1990-х гг. привел к развитию хранилищ, а позднее – к возникновению феномена больших данных. Однако еще задолго до появления больших данных, фактически к концу 1980-х – началу 1990-х гг., стала очевидной необходимость в исследованиях, направленных на анализ больших наборов данных. Примерно в то же время появился термин «глубинный анализ данных». Как мы уже отметили, в ответ на это началась разработка хранилищ данных и технологии OLAP. Кроме того, параллельно велись исследования в других областях. В 1989 г. Григорий Пятецкий-Шапиро провел первый семинар по обнаружению знаний в базах данных (KDD). Следующая цитата из анонса этого семинара дает ясное представление о том, какое внимание на нем уделялось междисциплинарному подходу к проблеме анализа больших баз данных:
Обнаружение знаний в базах данных ставит много интересных проблем, особенно когда эти базы огромны. Таким базам данных обычно сопутствуют существенные знания предметной области, которые могут значительно облегчить обнаружение данных. Доступ к большим базам данных недешев – отсюда необходимость выборки и других статистических методов. Наконец, для обнаружения знаний в базах данных могут оказаться полезными многие существующие инструменты и методы из различных областей, таких как экспертные системы, машинное обучение, интеллектуальные базы данных, получение знаний и статистика[2].
Фактически термины «KDD» и «глубинный анализ данных» описывают одну и ту же концепцию; различие заключается только в том, что термин «глубинный анализ данных» более распространен в бизнес-сообществах, а «KDD» – в академических кругах. Сегодня эти понятия часто взаимозаменяются[3], и многие ведущие академические центры используют как одно, так и другое. И это закономерно, ведь главная научная конференция в этой сфере так и называется – Международная конференция по обнаружению знаний и глубинному анализу данных.
Возникновение и эволюция науки о данныхТермин «наука о данных» появился в конце 1990-х гг. в дискуссиях, касающихся необходимости объединения статистиков с теоретиками вычислительных систем для обеспечения математической строгости при компьютерном анализе больших данных. В 1997 г. Джефф Ву выступил с публичной лекцией «Статистика = наука о данных?», в которой осветил ряд многообещающих тенденций, в том числе доступность больших и сложных наборов данных в огромных базах и рост использования вычислительных алгоритмов и моделей. В завершение лекции он призвал переименовать статистику в «науку о данных».
В 2001 г. Уильям Кливленд опубликовал план действий по созданию университетского факультета, сфокусированного на науке о данных[4]. В плане подчеркивалось место науки о данных между математикой и информатикой и предлагалось понимать ее как междисциплинарную сферу. Специалистам по данным предписывалось учиться, работать и взаимодействовать с экспертами из этих областей. В том же году Лео Брейман опубликовал статью «Статистическое моделирование: две культуры»[5]. В ней он охарактеризовал традиционный подход к статистике как культуру моделирования данных, которая предполагает основной целью анализа выявление скрытых стохастических моделей (например, линейной регрессии
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.
Сноски
1
Нильсон, Н. Дж. Обучающиеся машины. – М.: Мир, 1967.
2
Цитата взята из приглашения на семинар «KDD – 1989». – Здесь и далее прим. авт.
3
Некоторые специалисты все же проводят границу между глубинным анализом данных и KDD, рассматривая первый как подраздел второго и определяя его как один из методов обнаружения знаний в базах данных.
4
Shmueli, Galit. 2010. “To Explain or to Predict?” Statistical Science 25 (3): 289–310. doi:10.1214/10-STS330.
5
Breiman, Leo. 2001. “Statistical Modeling: The Two Cultures (with Comments and a Rejoinder by the Author).” Statistical Science 16 (3): 199–231. doi:10.1214/ss/1009213726.