Полная версия
Программирование Cloud Native. Микросервисы, Docker и Kubernetes
Подчеркнем еще раз – за блеском и преимуществами микросервисов, лежащих на поверхности, легко не заметить всех сложностей и совершенно другой парадигмы именно работы, эксплуатации всей системы в целом. Даже если удастся удачно разбить систему по ограниченным контекстам и минимизировать их зависимости, создать хорошо настроенные программные интерфейсы API, изучить Kubernetes и успешно развернуть и масштабировать свое приложение, то понять в итоге, что же происходит в работающей системе, будет в разы сложнее.
Можно забыть о прямой отладке в вашем редакторе IDE, если ваш код взаимодействует с несколькими микросервисами, и все они отвечают асинхронно. Интеграционные тесты будут очень сложны и поддержка их требует много ресурсов. Понять по журналам (logs) одного компонента, что происходит в системе в целом, невозможно. Производительность системы будет настолько распределена между отдельными микросервисами и сетевыми вызовами, что измерять нужно будет все сразу. Распределенные транзакции между различными хранилищами данных. Расчет на сбои всего и вся. Доверие образам контейнеров. Задача защиты трафика между микросервисами системы, обслуживание сертификатов SSL, авторизация, безопасность, роли… Продолжать можно еще долго.
Есть хорошие новости – экосистема созданных для облака приложений Cloud Native буквально наводнена инструментами и решениями для перечисленных нами вызовов. Зачастую они бесплатны и с открытым кодом, и каждый день появляются новые решения. Самая распространенная проблема – управление сетевыми вызовами между микросервисами, отслеживание задержек, шифрование трафика – неплохо решается так называемыми сетками микросервисов (service mesh) – такими как Istio и Linkerd. Мы еще вспомним про них в дальнейших главах. Сбор распределенных журналов также отлично решается, например стеком ELK (Elastic, Logstash, Kibana), или Fluentd. Стандарт OpenTracing, метрики Prometheus, и отчеты Grafana уже встроены во многие библиотеки для создания микросервисов, и просто используя их, вы получите мощнейший центр наблюдения за своей системой.
Тем не менее, все это богатство надо изучить, выбрать нужное и подходящее вам, и настроить – эти издержки надо обязательно добавить в общую стоимость разработки реальной системы из микросервисов.
Резюме
Микросервисы выглядят заманчиво, а вместе с контейнерами и оркестрацией Kubernetes и вовсе как очевидный выбор. Тем не менее, существует высокая цена эксплуатации системы, созданной на их основе, и экосистема для работы с ними требует инвестиций времени и ресурсов. В этой главе нет примеров – каждая система уникальна, и зависит прежде всего от области своего применения (domain). Архитектурные решения высокого уровня трудно описывать без сложного конкретного примера, поэтому мы рассмотрели все с высоты птичьего полета, но все концепции данной главы можно попробовать перенести на свой собственный проект.
Чтобы понять архитектуру и философию микросервисов чуть лучше, можно посоветовать следующие книги и ресурсы:
– Сэм Ньюмен (Sam Newman), «Создание микросервисов»
– Сэм Ньюмен (Sam Newman), «От монолита к микросервисам»
– www.cncf.io – главный сайт фонда Cloud Native Foundation, посмотрите раздел проектов (projects), многие посвящены работе микросервисных систем, в том числе OpenTracing и Prometheus.
– Некоторые видео с конференций KubeCon удачно описывают микросервисы для людей с разной степенью подготовки, найдите их канал на YouTube.
– Эрик Эванс (Eric Evans), «Предметно-ориентированное проектирование (DDD).»
– www.martinfowler.com – статьи про микросервисы и связанные концепции. Кое-что доступно и на русском языке.
3. Контейнеры и Docker
Контейнеры (containers) – относительно новое слово и концепция, мгновенно захватившая мир разработки программного обеспечения за последние несколько лет. Это несомненный прорыв в попытках разработчиков и системных администраторов максимально использовать доступные им вычислительные ресурсы, при этом снизив сложность разработки и выпуска приложений.
Если кратко вспомнить историю, то серверные приложения, сервисы и базы данных изначально располагались на выделенных для них физических серверах, в подавляющем большинстве случаев под управлением одного из вариантов операционной системы Unix (или ее клона Linux). С взрывным ростом вычислительных мощностей использовать один мощнейший сервер для одного приложения стало и расточительно, и неэффективно – на одном сервере стали работать несколько приложений, внутренних сервисов или даже баз данных. При этом незамедлительно возникли серьезные трудности – различные версии приложений использовали разные версии основных библиотек Unix, использовали разные несовместимые между собой пакеты расширений или дополнительные библиотеки, соревновались за одинаковые номера портов, особенно если они были широко используемы (HTTP 80, HTTPS 443 и т.п.)
Разработчики работали над своим продуктом и тестировали его на отдельно выделенных серверах для тестирования (среда разработки, development environment, или же дальше в среде тестирования, QA environment). На этих серверах сочетание приложений и сервисов было хаотичным и постоянно менялось в зависимости от этапа разработки, и как правило не совпадало с состоянием производственной (production) среды. Системным администраторам серверов пришлось особенно тяжело – совмещать созданные в изоляции приложения необходимо было развертывать и запускать в производственной среде (production), жонглируя при этом общим доступом к ресурсам, портам, настройкам и всему остальному. Надежность системы во многом зависела от качества настройки ее производственной среды.
Следующим решением, популярным и сейчас, стала виртуализация на уровне операционной системы. Основной идеей была работа независящих друг от друга операционных систем на одном физическом сервере. Обеспечивал разделение всех физических ресурсов, прежде всего процессорного времени, памяти и дисков с данными так называемый гипервизор (hypervisor). Делал он это прямо на аппаратном уровне (гипервизор первого типа) или же уже на уровне существующей базовой операционной системы (гипервизор второго уровня). Разделение на уровне операционной системы радикально улучшило и упростило настройку гетерогенных, разнородных систем в средах разработки и производства. Для работы отдельных приложений и баз данных на мощный сервер устанавливалась отдельная виртуальная операционная система, которую и стали называть виртуальной машиной (virtual machine), так как отличить ее «изнутри» от настоящей, работающей на аппаратном обеспечении ОС невозможно. На мощном сервере могут работать десятки виртуальных машин, имеющих соответственно в десятки раз меньше ресурсов, но при это совершенно независимые друг от друга. Приложения теперь свободны настраивать систему и ее библиотеки, зависимости и внутреннюю структуру как им вздумается, не задумываясь об ограничениях из-за присутствия других систем и сервисов. Виртуальные машины подсоединяются к общей сети, и могут иметь отдельный IP-адрес, не зависящий от адреса своего физического сервера.
Именно виртуальные машины являются краеугольным камнем облачных вычислений. Основные провайдеры облачных услуг Cloud (Amazon, Google, Yandex и другие) обладают огромными вычислительными мощностями. Их центры обработки данных (data center) состоят из большого количества мощных серверов, соединенных между собой и основным Интернетом сетями с максимально возможной пропускной способностью (bandwidth). «Арендовать» себе целый сервер, постоянно работающий и присутствующий в сети Интернет, было бы очень дорого и особенно невыгодно для только начинающих компаний-стартапов, или проектов в стадии зарождения, которым не нужны большие мощности. Вместо этого провайдеры облака продают виртуальные машины разнообразных видов – начиная от самых микроскопических, по сути «слабее» чем любой современный смартфон – но этого зачастую более чем достаточно для небольшого сервера, обслуживающего не более чем несколько простых запросов в минуту или того меньше. Более того, виртуальные машины оптимизированы – новая виртуальная машина создается по запросу в течение нескольких минут, версия операционной системы всегда проверена на уязвимости и быстро обновляется. Если виртуальная машина больше не нужна, ее можно быстро остановить и перестать платить за использование облачных ресурсов.
Тем не менее, виртуальные машины, несмотря на то что выглядят совершенно универсальным инструментом облака, обеспечивающим полную изоляцию на уровне операционной системы, имеют существенный недостаток. Это по прежнему полноценная операционная система, и учитывая сложность аппаратного обеспечения, большое количество драйверов, поддержку сети, основных библиотек, встроенное управление пакетами расширения (package manager), и наконец интерпретатор команд (shell), все это выливается во внушительный размер системы, и достаточно долгое время первоначальной инициализации (минуты). Для некоторых случаев это может не являться препятствием – в том случае если ожидается что количество виртуальных машин фиксировано или скорость их инициализации не является критической, и на каждой из них работает большое приложение, останавливать и перезапускать которое часто нет необходимости.
Однако, подобное предположение все чаще является препятствием для приложений с высокой скоростью разработки и постоянным появлением новой функциональности, и особенно это критично для архитектуры на основе микросервисов.
– Микросервисы в идеале очень малы, и даже самая слабая виртуальная машина может быть слишком неэффективна для них, как по избыточной мощности, так и по цене
– Одно из основных теоретических преимуществ микросервисов – быстрое, почти мгновенное масштабирование при увеличении нагрузки на них. В мире где удачное приложение собирает миллионы запросов в секунду, ожидание нескольких минут для появления следующей копии сервиса просто недопустимо и практически лишает легкую масштабируемость смысла.
– Опять же из-за их малого размера микросервисы могут иметь намного меньше зависимостей и требований к операционной системе в которой они работают – полная операционная система, ограниченная гипервизором, является для них чрезмерным ресурсом.
Именно так на свет появилась следующая идея – контейнеры. Контейнеры позволяют перейти на следующий уровень разделения вычислительных ресурсов, не налагая на приложение, работающей в облаке, необходимость нести с собой операционную систему виртуальной машины и связанные с этим издержки.
Контейнеры – это Linux
Давайте сразу определим для себя, что представляют собой контейнеры, и чем они отличаются от виртуальных машин, чтобы избежать путаницы которая часто случается между ними. Контейнер – это набор ограничений для запуска приложений, которые поддерживаются ядром (kernel) операционной системы Linux. Эти ограничения заставляют приложение исполняться в закрытой файловой системе, со своим пространством процессов (приложение не видит процессы вне своей группы), и с квотами на использование памяти, мощности процессоров CPU, дисков, и возможно сети. При этом у приложения в таком ограниченном пространстве существует свой сетевой IP-адрес и полный набор портов, а также полная поддержка ядра системы – устройств ввода/вывода, управление памятью и процессором, многозадачность, и наконец самое главное, возможность установить любые расширения и библиотеки, не беспокоясь о конфликтах с другими приложениями.
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.