bannerbanner
Структура мироздания Вселенной. Часть 3. Гипермир
Структура мироздания Вселенной. Часть 3. Гипермир

Полная версия

Структура мироздания Вселенной. Часть 3. Гипермир

Настройки чтения
Размер шрифта
Высота строк
Поля
На страницу:
5 из 7

Анапу затопило 30 января 2022 г. В Краснодарском крае – это настоящее стихийное бедствие. Потоки воды от снега и дождей «пришли» на курорт накануне, 29 января 2022 года. 30 января в Анапской удалось отвести паводковые воды. На улицах Станичной и Зеленой спасатели и техника работали всю ночь (с 29 на 30 января). Также ночью продолжались работы по расчистке ручья Можепсин. Локальные подтопления произошли на улицах станиц Гостагаевской, Анапской, микрорайона Алексеевка и поселка Виноградного. Там наблюдают обильный сход воды.

Архангельскую, Курганскую, Магаданскую, Свердловскую, Челябинскую области, Камчатку, Коми и Якутию ожидает жара до +30…+36 градусов в ближайшие два-три дня. Переменчивая погода с дождями прогнозируется в Московской, Ленинградской, Тамбовской областях, Приморье и других регионах. Об этом 14 июля 2022 сообщил научный руководитель Гидрометцентра России Роман Вильфанд.

Наиболее жаркая погода в достаточно неожиданных регионах. В Магаданской области, на Камчатке, востоке Коми, Архангельской области температура прогнозируется выше 30 градусов. Очень жарко и на Урале: в Екатеринбурге температура выше нормы на 4—5 градусов, в Челябинской, Курганской областях – до +36 градусов».

Городские пляжи Сочи закрыты для купания из-за сильного шторма. Ливни повысили уровень воды в реках, подтоплены 11 населенных пунктов. Сели повредили автомобильные и железные дороги, мосты. Две машины с туристами смыло в Черное море, есть погибшие. Штормовое предупреждение объявлено до 25 июня, но синоптики прогнозируют непогоду как минимум до 28 июня. Но это вряд ли остановит туристов от поездки на долгожданный отдых, считают представители туроператоров. Более частые и интенсивные проявления непогоды – последствие глобального потепления.

2023 год. Земля в череде катастроф

Аномальная жара в 2023 году наблюдалась в ряде регионов земного шара. 4 июля 2023 года была зафиксирована самая высокая с начала наблюдений (1979 года) средняя температура поверхности Земли +17,18° C. 6 июля 2023 года был зафиксирован новый рекорд с температурой +17,23° C. Июль 2023 года стал самым жарким месяцем за всю историю наблюдений и, предположительно, с Микулинского межледниковья 120 тысяч лет назад. В 2023 году были обновлены абсолютные рекорды температур в таких странах, как Албания, Китай, Таиланд, и Турция, а также в ряде городов, включаяМилан, Валенсию, Дакку, Вьентьян и другие.

По данным Copernicus Climate Change Service, лето 2023 года стало самым жарким с начала наблюдений, на 0,66° C превысив среднее значение для этого времени года и на 0,3° C побив прежний рекорд, установленный в 2019 году. Средние температуры июля и августа на 1,5° C превышали доиндустриальный уровень, чего планировалось не допустить Парижским соглашением.

Согласно информации американского Национального центра данных по снегу и льду, зимой 2023 года максимальная площадь морского льда в Антарктике была зафиксирована 10 сентября и составила 16,96 млн км²; это самый низкий показатель с начала спутниковых наблюдений в 1979 году, примерно на 1 млн км² меньше прежнего рекорда, установленного в 1986 году.

По данным системы Climate Reanalyzer, аномалия средней температуры поверхности Земли 11 сентября 2023 года впервые достигла 1° C (16,65° при климатической средней температуре для этого дня 15,65°). 16 сентября аномалия составила уже 1,11° C. Наибольший вклад в эту аномалию пришёлся на Антарктиду, в отдельных её частях температура более чем на 20° C превышала средние значения.

Соответственно все другие катастрофические явление, связанные с жарой, такие как ливни, ураганы, потопы, пожары, таяние льдов, а также косвенно обусловленные – землетрясения, вулканическая деятельность и многие другие проявили себя в этом году наиболее интенсивным образом. На фото 5.2.4 приведены совокупные экономические потери от природных катаклизмов по годам.


Фото 5.2.4 Соответствующие экономические потери от природных катаклизмов по годам.


Cнежная гроза обрушилась на Олекминский район Якутии. Раскаты грома в феврале услышали жители одного из сел, которые стали свидетелями редкого погодного явления снежной грозы и молний в воскресенье 26.02.2023 года. Очевидцы сообщают, что во время сильной метели слышались раскаты грома, а в небе вспыхивали молнии. Как сообщили ЯСИА в Единой дежурной диспетчерской службе Олекминского района, метель началась примерно в полдень. «Порывы ветра сегодня достигали до 15 метров в секунду. Сейчас все пошло на спад. Раскаты грома во время метели слышали во втором Нерюктяйинском наслеге.», – информировал диспетчер.

Что происходит с климатом на Земле?

Последние семь лет, начиная с 2015 года, подряд становились самыми тёплыми за всю историю наблюдений. Глобальное повышение температуры стало причиной миллионов смертей по всему миру. В мае 2022 года содержание углекислого газа в атмосфере Земли достигло очередного максимума. Такой концентрации CO2 в атмосфере Земли не бывало уже миллионы лет. Повышение уровня CO2 в воздухе происходит при сжигании ископаемого топлива для нужд транспорта и производства электроэнергии, при производстве цемента, из-за вырубки лесов, повышения деятельности в сельском хозяйстве и т. д. В результате атмосфера планеты неуклонно нагревается, что вызывает каскад погодных бедствий, включая эпизоды экстремальной жары, засухи и лесных пожаров. Нынешняя волна жары, охватившая животноводческие хозяйства Канзаса, привела к гибели примерно 10 000 голов крупного рогатого скота. Опасная, затяжная аномальная жара угрожает миллионам людей в Западной Европе – объявлен самый высокий уровень предупреждения о жаре. И не только это: увеличение количества осадков, наводнения и нарастающая мощь тропических штормов также являются следствием антропогенного изменения климата.

Всемирная Метеорологическая Организация (ВМО) ООН заявила, что в ближайшие пять лет возрастет вероятность того, что глобальные температуры повысятся более чем на 1,5°С по сравнению с доиндустриальным уровнем. ВМО оценивает в 20% вероятность того, что этот порог будет преодолен до 2024 года. В прогнозах 2015 года вероятность этого оценивалась в 10%.

Напомним, что Парижское соглашение 2015 года поставило перед мировыми лидерами определенные цели. Они обязались приложить усилия для того, чтобы не допустить потепления в мире более чем на 1,5 градуса в этом столетии. По оценке экспертов, новая модель свидетельствует о том, что этот уровень может быть нарушен не до конца столетия, а уже в самые ближайшие годы, хотя его вероятность и оценивается как один к пяти. Специалисты выражают обеспокоенность стремительными темпами потепления климата: так, среднегодовая температура на планете уже более чем на один градус Цельсия выше, чем в 1850-х годах.

С точки зрения реального представления Эволюции планет и звёзд – всё движется и изменяется. Главным детектором центрального поля тяготения Земли является Луна. Она, к сожалению, покидает Землю каждый год удаляясь от неё на 4 см. Это говорит о том, что поле тяготения ядра Земли уменьшается по величине, что ведёт ЕЁ к меньшему отталкиванию от одноимённого поля Солнца и большему притяжению увеличивающейся массы атомно-молекулярного вещества коры, имеющей противоположный знак гравитационного поля. И по Закону всемирного тяготения Ньютона Земля с большей силой притягивается к Солнцу, что приводит к смене радиуса её орбиты вокруг Солнца.

Периоды спокойного и активного Солнца сменяют друг друга примерно каждые 11 лет. Об этом известно давно, но природа явления до сих пор не разгадана. Минимум солнечной активности, обычно знаменующий собой окончание предыдущего 24 цикла, пришелся на декабрь 2019 года. По прогнозам ученых, пик солнечной активности 25 цикла будет достигнут в июле 2025 года.

Как заявляет Козлов В. И.37

«Обнаруженное по космическим лучам увеличение площади солнечного цикла 23 явилось предвестником сбоя 11-летней цикличности: в соответствии с гипотезой автора об инварианте 22-летнего цикла, вслед за увеличением площади 23 цикла последовало уменьшение площади (энергоемкости) следующего 24 цикла. Уменьшение энергоемкости сопровождается уменьшением относительной вариации светимости Солнца, которая в 24-цикле уменьшилась до уровня среднего значения трех предыдущих циклов, т. е., практически, вдвое. Прогнозируется аномальное многолетнее повышение радиационного фона ГКЛ в 2019—2021 гг. Сохранение инварианта 22-летнего цикла соответствует восстановлению 11-летней цикличности в 25-м цикле, что означает выполнение следующего критерия: уровень радиационного фона ГКЛ в максимуме 25 цикла (2024—2025 гг.) должен быть значимо ниже уровня радиационного фона ГКЛ в максимуме 24 цикла (2014—2015 гг.). В этом случае текущий неординарный сбой циклов 23—24 будет иметь статус „локального“. Нарушение инварианта 22-летнего цикла соответствуют не восстановлению 11-летней цикличности в 25 цикле, что означает выполнение следующего физического критерия: уровень радиационного фона ГКЛ в максимуме предстоящего 25 цикла (2024—2025 гг.) должен быть значимо равен, или выше, т.е. не ниже уровня фона ГКЛ в максимуме 24 цикла (фото 5.2.5, 2014—2015 гг.). В этом случае состояние неординарного сбоя 23-24-25 циклов изменится с локального на… глобальный, со всеми вытекающими отсюда последствиями».

Все аномальные явления связаны с годом начала инверсии в магнитном гипермонополе, жёстко связанным с ядром Солнца. Во время этого процесса увеличивается частота и мощность магнитных бурь, повышается активность Солнца. Однако, несмотря на незначительное количество черных пятен 24 цикла Солнечной активности (индекс количества чёрных пятен – числа Вольфа 59—87—100) по сравнению с ноябрём 1957 (254) ущерб на Земле оказался более ощутимым. Числа Вольфа за 2015 год-42, а за 2016 – 15. Продолжительность и интенсивность 24 цикла может быть больше вопреки прогнозам учёных.

В ноябре 2019 года появились два солнечных пятна с обратной полярностью, что, возможно, сигнализирует о начале 25-го цикла. По состоянию на 1 декабря 2020 года 25-й солнечный цикл показывает первые признаки того, что он несколько сильнее 24-го солнечного цикла:

• Среднее количество солнечных пятен за 13 месяцев в мае 2020 года составляло 5,6 пятна в день по сравнению с 3,5 за соответствующий месяц в предыдущем цикле.

• В ноябре 2020 года в среднем приходилось 34 пятен в день, на 10 месяцев раньше, чем в первый месяц, и в среднем 30 или более в 24-м цикле.

• Первый отдельный день, в котором было 90 пятен, произошел в 12-м месяце этого цикла, по сравнению с 27-м месяцем в 24-м цикле.

• С 1 июня 2020 года было 78 безупречных дней по сравнению со 130 в соответствующий период 24 цикла.

Эти цифры находятся в раннем согласии с новыми данными (октябрь 2020 г.). которые прогнозируют, что 25-й цикл солнечной активности почти наверняка будет сильнее, чем SC24 (ISN max 116), и, скорее всего, сильнее, чем SC23 (ISN max 180).

Анатолий Витальевич Дьяков, основоположник гелиометеорологии, указывал, что аномалии погоды связаны как с максимумами, так и с минимумами солнечной активности. На большом фактическом материале он доказал, что ослабление солнечной активности приводит к опусканию холодных воздушных масс на Западную Сибирь – Северный Казахстан. При этом зимой устанавливается морозный антициклон. А при росте солнечной активности наблюдается обратный процесс: вынос теплых и влажных воздушных масс. Противоположные потоки воздуха (идущие параллельно) в ответ на такие флуктуации солнечной активности в Европу, в первом случае, юго-западные потоки с теплом и влагой, а во втором – северо-восточные потоки со стороны полуострова Таймыр обрушивают зимой туда сильные морозы с устойчивым антициклоном. Однако это общая классическая схема. На практике чаще возможны отступления.

Даже в годы близкие к максимуму в 24 цикле более низкий уровень числа Вольфа делает западный поток воздуха более слабым, чтобы добираться столь далеко на восток. И зимы в глубине континента получают меньше тепла. Но периодические флуктуации на фоне пика или минимума кривой могут иногда нарушать общую закономерность Солнце – погода на данных территориях (Европа, Сибирь, Казахстан) Нынешний 24-й цикл солнечной активности отмечен целым рядом катастрофических наводнений и ураганов, в результате которых сильно пострадали Филиппины, Гаити, Дальний восток, Центральная Европа и Балканы. Циклу предшествовал целый ряд крупных землетрясений 2011 года.

Зимы 2012/2013 и 2013/2014 были две подряд весьма суровые в Казахстане (а обычно такие зимы бывают в среднем раз в 10—12 лет). То есть в глубине континента слабое Солнце способствует холодным зимам. Прошлые зимы 2013/14 и 2014/2015 годов в Евразии была аномально-теплой. Зима 2015/16 была почти без снега в Москве, а в конце января начале февраля осенняя погода с дождями.

Солнечные выбросы – солнечные пятна.

Последовательной теории, описывающей периоды солнечной активности и формирование солнечных вспышек, пока не существует.


Фото 5.2.5. Солнце в максимуме активности в апреле 2014 года (слева) и в минимуме – в декабре 2019 года.


Солнечная вспышка совершенно безопасна для человечества. Её энергия ничтожна по сравнению с полной светимостью Солнца. Однако её влияние на Землю связано с выбросами корональной массы – это облако плазмы массой от одного до десяти миллиардов тонн, которое покидает Солнце и устремляется в космос. Слабые выбросы быстро рассеиваются и смешиваются с окружающим солнечным ветром – явление ежедневное. Реже они бывают достаточно мощными, чтобы преодолеть межпланетные расстояния. Около 90% даже самых мощных вспышек (класса X) сопровождаются выбросами корональной массы. Выброс корональной массы – это поток быстрых протонов и электронов и некоторых других частиц. В момент вспышки солнце может вытолкнуть такое облако плазмы. Куда оно будет двигаться? Если в сторону Земли, то даже при его скорости 600—900 км/сек, ему понадобится на это двое-трое суток, чтобы преодолеть расстояние в сто пятьдесят миллионов километров.

Людей на Земле надёжно защищает и магнитное поле Земли. Встречаясь с «магнитным щитом» нашей планеты, частицы меняют траекторию. Отражаясь от Южного магнитного полюса, они летят к Северному и обратно.

Однако, выброс может обладать и собственным магнитным полем. Он может исказить геомагнитные линии и нарушить непроницаемость «магнитных пробок» на полюсах. Тогда потоки частиц устремляются к Земле в северных и южных полярных районах, возбуждая полярные сияния.

Высокая солнечная активность оказывает ощутимое воздействие на Землю. Она влияет на технику, в частности, на функционирование систем связи, навигации, электроэнергетику, а в отдельных случаях – на самочувствие людей. В связи с этим важнейшей задачей является мониторинг и прогнозирование космической погоды – гелиогеофизических процессов, происходящих на Солнце, в околоземном космическом пространстве и на Земле. В России ими занимается Институт прикладной геофизики имени академика Е. К. Федорова Росгидромета. О последствиях, к которым может привести на Земле мощная солнечная буря, об отечественных средствах наблюдения за космической погодой и их развитии рассказал корреспонденту РИА Новости Андрею Красильникову заместитель директора института по научной работе доктор технических наук Владимир Минлигареев38.

В периоды высокой гелиогеофизической активности общее количество неисправностей в бортовых системах космических аппаратов и нарушений обмена управляющей и целевой информацией возрастает в 2—4 раза, что резко сокращает время целевого применения спутников. Анализ показал, что более 50 процентов неисправностей, а по отдельным системам – до 90 процентов, происходят из-за воздействий космической среды на бортовую аппаратуру спутников. При этом более 80 процентов таких неисправностей повлияли на выполнение аппаратом целевых задач. В периоды высокой солнечной активности резко возрастают ошибки прогнозирования движения спутников.

Сильное воздействие космической погоды способно уничтожить космические аппараты и привести спутниковых операторов к многомиллиардным ущербам.

Рентгеновское излучение доходит до планеты за восемь минут, тяжелые частицы – за несколько часов, облака выброса корональной плазмы, как связанные зарядовые кластеры ГЭММ – за двое-трое суток.

В марте 1989 года события на Солнце вызвали аварию на Квебекской электростанции: там сгорели входные трансформаторы, и миллионы людей остались без света и тепла.

В октябре 2003 года самая мощная в современной истории человечества «Хэллоуинская» вспышка класса Х45 на Солнце повредила ряд спутников, вызвала перебои в телефонной и мобильной связи. Эта вспышка привела к потере японского спутника ADEOS-2. 28 октября 2003 года из строя вышел один из высоковольтных трансформаторов в шведском городе Мальмё, обесточив на час весь населенный пункт. От бури пострадали и другие страны.

Подобная вспышка наблюдалась и 7 сентября 2005 года.

В первой половине среды, 6 сентября 2017 года, ученые зарегистрировали самую мощную за последние 12 лет солнечную вспышку. Вспышке присвоен балл X9.3 – буква означает принадлежность к классу экстремально больших вспышек, а число – силу вспышки. Выброс миллиардов тонн материи произошел почти в районе AR 2673, практически в центре солнечного диска, поэтому земляне не избежали последствий случившегося. Вторая мощная вспышка (балла X1.3) зафиксирована вечером в четверг, 7 сентября, третья – сегодня, в пятницу, 8 сентября. Корональный выброс от первой вспышки уже достиг Земли, планета столкнулась с облаком солнечной плазмы диаметром около ста миллионов километров, хотя ранее прогнозировалось, что это произойдет к вечеру пятницы, 8 сентября.

Однако за последние три века человечество пережило и еще более мощные солнечные вспышки, чем произошедшие в 2003, 2005 и 2017 годах. В начале сентября 1859 года геомагнитная буря привела к отказу телеграфных систем Европы и Северной Америки. Причиной назвали мощный выброс корональной массы, достигший планеты за 18 часов и наблюдаемый 1 сентября британским астрономом Ричардом Кэррингтоном.


Фото 5.2.5а Событие Кэррингтона 1859 года.


Такие проявления солнечной активности, как рентгеновские вспышки, корональные выбросы массы, корональные дыры, всегда сопровождаются образованием в фотосфере солнечных пятен. В периоды, когда пятен мало или вовсе нет – во время минимума солнечного активности, – все эти события прекращаются. Затем пятна появляются снова, активность начинает расти, но это уже пятна нового солнечного цикла.

В 2018 году начался минимум солнечной активности, когда неделями на Солнце не появлялось ни одного пятна, а в феврале 2019 года уровень коротковолнового излучения светила уменьшился в 100 раз и упал ниже порога чувствительности приборов. Эксперты по космической погоде из NASA и американского метеорологического агентства NOAA объявили о начале нового 11-летнего цикла с 2019 года солнечной активности, 25-го по счету с 1749 года, когда был начат отсчет числа солнечных пятен.

Не повторится ли Кэррингтонское событие?

11 мая 2024 | 13:46 Центр ФОБОС

Экстремально сильный геомагнитный шторм, бушующий на Земле, стал следствием серии мощных взрывов – вспышек на Солнце. Большинство из них появились на свет в области солнечных пятен AR3664. За последние несколько дней эта группа солнечных пятен увеличилась в размерах примерно до 200 000 километров в ширину, что более чем в 15 раз превышает диаметр Земли. Вы можете увидеть эту драматическую эволюцию в новом замедленном видео, которое состоит из изображений, полученных космическим аппаратом НАСА Solar Dynamics Observatory.

Группа пятен на Солнце AR3664 не только огромна, но и чрезвычайно активна: она продолжает вызывать мощные вспышки на Солнце и выбросы корональной массы, некоторые из которых и поразили Землю, вызвав очень сильные магнитные бури и полярные сияния.

По данным Национальной метеорологической службы Национального управления океанических и атмосферных исследований США (NOAA), солнечные пятна – это тёмные участки на поверхности Солнца, где магнитное поле аномально сильное – примерно в 2500 раз сильнее, чем на Земле. Солнечные пятна, как правило, размером с Землю, но некоторые из них, такие как AR3664, могут стать ещё более гигантскими. Чем больше становится область, тем сильнее возрастает сложность магнитного поля и угроза дополнительных солнечных вспышек.

Исследователи считают, что группа солнечных пятен AR3664 в настоящее время примерно такого же размера, как солнечное пятно, связанное с Каррингтонским событием 1859 года – самой мощной геомагнитной бурей, когда-либо зарегистрированной на Земле.

Напомним, что Каррингтонское событие было крупнейшей магнитной бурей, которая произошла в начале сентября 1859 года всего за несколько месяцев до солнечного максимума 1860 года. В августе 1859 года астрономы всего мира с восхищением наблюдали, как растёт число солнечных пятен на солнечном диске. Среди них был Ричард Кэррингтон, любитель наблюдать за небом из маленького городка Редхилл, расположенного недалеко от Лондона в Англии.

1 сентября, когда Кэррингтон зарисовывал солнечные пятна, он был ослеплен внезапной вспышкой света. Кэррингтон описал это как «вспышку белого света». Все это продолжалось около пяти минут. Вспышка была крупным выбросом корональной массы, выбросом намагниченной плазмы из верхних слоев атмосферы Солнца, короны. За 17,6 часов солнечное вещество преодолело расстояние более 150 миллионов километров между Солнцем и Землей и обрушило свою силу на нашу планету. По данным NASA, обычно солнечное вещество добирается до Земли за несколько дней, тут же, на следующий день после того, как Кэррингтон наблюдал впечатляющую вспышку, Земля пережила беспрецедентную геомагнитную бурю, из-за чего телеграфные системы вышли из строя, а полярные сияния, которые обычно наблюдаются в полярных широтах, были видны в тропиках. Кэррингтон предположил, что вспышка на Солнце, которую он наблюдал, почти наверняка была причиной этого мощного геомагнитного возмущения, это была связь, которая ранее никогда не выявлялась. Солнечная буря 1859 года теперь известна как событие Кэррингтона в его честь.

Солнечные бури, подобные событию Каррингтона, согласно данным NOAA SciJunks, случаются примерно раз в 500 лет. Хотя солнечные бури в 2 раза меньшей интенсивности, чем событие Каррингтона, случаются чаще – примерно каждые 50 лет.

Информацию о солнечной активности можно почерпнуть из множества источников. В России – это институты РОСГИДРОМЕТ, ИЗМИРАН, Физический институт им. П. Лебедева и другие.

Кроме 22 летнего цикла активности Солнца, более тонкие исследования указывают и на другие периоды: короткие – 3, 5, 7—8 и длинные – 36, 45, 52, 63, 79, 90, 105, 144, 180, 314, I760, 2400 лет. Существует и столетний цикл максимального количества пятен на Солнце. Так при максимуме активности Солнца в ноябре 1957 года их число Вольфа достигало максимального значения – 254, а в декабре 2012, тоже максимума активности – всего лишь 145. Относительная интенсивность активности потока макровихронов 11-летних циклов меняется с периодом 80—90—100 лет.

Короткие периоды обусловлены изменением инверсного магнитного поля. Длинные периоды изменения связаны с изменением стационарного магнитного поля.

Ускорение частоты самовращения ядра звезды задаётся потоком внутреннего движения по волноводам магнитных монополей и излучаемых нейтронов на её поверхности, а стабилизация и замедление вращения, т.е. регуляция сброса носителем индуктируемой лишней энергии – потоком макровихронов широкого спектра частот, создаваемых переменными электрическим, гравитационным и магнитным полем и веществом, окружающим вращающееся ядро.

Сфера материи Солнца с радиусом более половины общего видимого радиуса звезды и прилегающая к этому ядру имеет структуру нейтронной звезды, т.е. заполнена движущимися в мощном гравитационном поле-оболочке нейтронами. Далее следует слой сферы со структурой «коричневого» «карлика», т.е. начинает увеличиваться концентрация протонов, антипротонов, позитронов и электронов – продуктов распада нейтронов39 в более слабых, но ещё достаточно сильных гравитационных полях. Затем – сфера со структурой «красного» карлика. Фотосфера – это излучение «жёлтого» карлика – средней по величине звезды.

На страницу:
5 из 7

Другие книги автора