bannerbannerbanner
Происхождение жизни. От туманности до клетки
Происхождение жизни. От туманности до клетки

Полная версия

Происхождение жизни. От туманности до клетки

Настройки чтения
Размер шрифта
Высота строк
Поля
На страницу:
4 из 4

Прыгающий Юпитер

При всех достоинствах «модели из Ниццы», объясняющей очень многие свойства Солнечной системы, в ней есть к чему придраться. Прежде всего, в процессе миграции Юпитера он проходит орбитальные резонансы с Марсом. Хотя это не очень опасные резонансы, такие как 1:7, но их достаточно, чтобы орбита Марса вытянулась и стала заходить в пояс астероидов. Ничего подобного в Солнечной системе мы не видим. Второй недостаток относится к судьбе нерегулярных спутников. Модель хорошо предсказывает захват планетезималей на орбиты нерегулярных спутников Сатурна, Урана и Нептуна, но система нерегулярных спутников Юпитера устроена точно так же и, видимо, должна иметь такое же происхождение – путем захвата планетезималей при близких проходах двух планет-гигантов. В классической «модели из Ниццы» близких встреч Юпитера с другими планетами не было. Однако в 10–20 % запусков моделирования происходили близкие проходы Урана или Нептуна мимо Юпитера, отчего его орбита изменялась скачкообразно, пропуская опасный резонанс с Марсом, а ледяной гигант (т. е. Уран или Нептун) попадал на удаленную от Солнца орбиту или оказывался выброшенным из системы. В дальнейшем авторы «модели из Ниццы», изучая структуру орбит астероидов, показали, что «прыгающий Юпитер» лучше соответствует реальности, чем плавное изменение орбит в исходной модели (Morbidelli et al., 2010). Более того, сценарий, в котором ледяной гигант выбрасывается из Солнечной системы, тоже возможен: не исключено, что исходно в ней был еще один ледяной гигант, подобный Урану и Нептуну. Такие выброшенные планеты, свободно плавающие в межзвездном пространстве, в последние годы были обнаружены астрономами.

Солнечная система – норма или исключение?

На сегодня ученым известны тысячи различных экзопланет, и можно попытаться сравнить их с планетами Солнечной системы и оценить, насколько устройство нашей системы типично в галактике. Большинство открытых на сегодня экзопланет обнаружены либо методом лучевых скоростей, либо методом транзитов. Чем ближе планета к звезде, тем больше шансов ее обнаружения этими методами, потому что и затмение, и изменение скорости звезды происходит с периодичностью в один оборот планеты.

Кроме того, массивные планеты при любом способе поиска найти легче, чем малые. Поэтому не удивительно, что в начале поиска экзопланет было открыто множество «горячих Юпитеров», очень близких к звезде. С появлением более чувствительных приборов были открыты также легкие экзопланеты с массой порядка земной и даже меньше. Но в целом наши знания о других звездных системах очень отрывочны. Например, если бы мы наблюдали Солнечную систему с расстояния в 100 световых лет нашими современными приборами, то обнаружили бы только Венеру и Землю.

Даже по таким отрывочным данным понятно, что в галактике есть множество звездных систем, не похожих на Солнечную. Например, в системе HD 80606 планета-гигант обращается по сильно вытянутой эллиптической орбите, и расстояние от нее до звезды меняется в 30 раз. Есть системы, в которых одна из планет обращается вокруг звезды не в ту сторону, что остальные. Эти и другие ситуации, кстати, наблюдались во время некоторых запусков «модели из Ниццы». В период нестабильности очень малые отличия начальных условий могут привести к совершенно разным результатам, так что судьба нашей Солнечной системы могла быть совсем другой.

В Солнечной системе есть четкое разделение планет по массам: самая тяжелая силикатно-железная планета (Земля) и самая легкая из гигантов (Уран) отличаются по массе в 14 раз. Среди экзопланет очень многие имеют массу в промежутке между массами Земли и Урана. Ученым удалось измерить диаметр и рассчитать плотность части таких планет. Оказалось, что среди них есть и «мини-Нептуны» с малой плотностью, и «суперземли» с плотностью примерно как у Земли.

Конец ознакомительного фрагмента.

Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

Сноски

1

Наглядное представление об устойчивости планетных орбит можно получить в онлайн-игре Super Planet Crash (http://www.stefanom.org/spc/). – Здесь и далее прим. авт.

2

Большая часть информации в этой главе взята из двух обзоров: Montmerle, Augereau, Chaussidon, Gounelle, Marty, Morbidelli, 2006. Earth, Moon and Planets 98, doi: 10.1007/s11038-006-9087-5; Crida, 2009, http://arxiv.org/abs/0903.3008. Другие источники указаны в тексте.

Конец ознакомительного фрагмента
Купить и скачать всю книгу
На страницу:
4 из 4