Полная версия
Достучаться до небес. Научный взгляд на устройство Вселенной
Мы живем в невероятно интересное время, когда проводятся самые дерзкие эксперименты в области физики и космологии. В книге мы рассмотрим широкий спектр всевозможных исследований и коснемся разных способов познания мира – через искусство, религию и науку, – но обсуждать будем преимущественно цели и методы современной физики. Ведь даже самые крохотные объекты Вселенной помогают нам понять, кто мы такие и откуда пришли. Крупные структуры проливают свет на наше космическое окружение, а также на происхождение Вселенной. Эта книга о том, что и каким образом мы надеемся найти. Наше путешествие будет полно загадок и приключений – так что добро пожаловать на борт.
Часть I
Масштабирование реальности
Глава 1
Тебе – мало, мне – в самый раз
Среди множества причин, по которым я выбрала своей профессией физику, было желание сделать что-нибудь долговременное, даже вечное. Если, рассуждала я, мне предстоит вложить столько времени, энергии и энтузиазма в какое-то дело, то результат этого дела должен быть истинным и… ну, скажем, остаться навсегда. Как большинство людей, я считала, что научные открытия и идеи выдерживают испытание временем.
Пока я билась над физикой, моя подруга Анна Христина Бюхманн изучала в колледже английский язык. По иронии судьбы, она выбрала своей профессией литературу ровно по той же причине, которая привела меня к физике и вообще к науке. Ее привлекали вдохновенные истории, способные пережить века. Обсуждая с ней много лет спустя роман Генри Филдинга «История Тома Джонса, найденыша», я узнала, что еще студенткой она принимала участие в написании аннотации того самого издания этого романа, которое мне так понравилось.
«Том Джонс» был опубликован 250 лет назад, тем не менее его юмор и затронутые в романе вопросы актуальны по сей день. Попав впервые в Японию, я прочла гораздо более древнее произведение – «Повесть о Гэндзи» – и поразилась тому, насколько современными выглядят его герои, хотя прошла уже целая тысяча лет с тех пор, как Мурасаки Сикибу описала их всех. Гомер создал «Одиссею» еще на 2000 лет раньше. Несмотря на то что и век, и люди там описаны совсем другие, мы до сих пор наслаждаемся рассказом о странствиях Одиссея и неподвластными времени картинами человеческой природы.
Ученые редко читают старые – и тем более древние – научные тексты. Как правило, мы оставляем это занятие историкам и литературным критикам. Тем не менее мы вовсю пользуемся знаниями, накопленными человечеством за многие века, – это можно сказать и о Ньютоне с его XVII в., и о Копернике, жившем еще на сотню лет раньше. Может быть, мы забываем их книги, зато тщательно сохраняем изложенные в них важные идеи.
Разумеется, наука не есть неизменное собрание универсальных законов, которое все мы изучаем в начальной школе. С другой стороны, это и не собрание произвольных правил. Наука – непрерывно развивающийся массив знаний. Многие из гипотез, которые мы в настоящий момент исследуем, окажутся ошибочными или неполными. Научные формулировки, естественно, меняются, по мере того как мы преодолеваем границы известного и вторгаемся в области непознанного, где можно уловить далекий отблеск еще более глубоких истин.
Ученым постоянно приходится сталкиваться с одним занятным парадоксом. Заключается он в том, что в погоне за вечными истинами нам часто приходится работать с идеями, которые мы сами же затем пересматриваем или отбрасываем – иногда под давлением экспериментальных данных, иногда просто с развитием представлений об изучаемом предмете. Прочное ядро проверенных и надежных знаний всегда окружено неопределенностью, которая и представляет предмет текущих исследований. Некоторые горячо обсуждаемые сегодня идеи и предположения будут мгновенно забыты, если завтра более убедительные или полные экспериментальные данные лишат их основы.
Когда Майк Хакаби, кандидат в президенты США от Республиканской партии на выборах 2008 г., предпочел в своих публичных речах сделать ставку на религию, а не на науку – отчасти потому, что научные «верования» меняются, тогда как христиане считают своим учителем вечного Бога, – в этом был резон. Вселенная развивается, и научные знания о ней – тоже. Постепенно ученые снимают с реальности один покров за другим и обнажают то, что скрывается в глубине. Зондируя все более далекие от нас масштабы реальности, мы расширяем и обогащаем представления человечества об окружающем мире. Когда нам удается узнать что-то новое о том, как устроен наш мир, мы делаем шаг вперед, а неизведанное отступает. При этом научные «верования» соответствующим образом изменяются.
Тем не менее сегодня, когда развитие техники позволяет нам выйти на новый уровень наблюдений, мы не спешим отбрасывать теории, которые при доступных прежде масштабах и энергиях или при доступных прежде скоростях и плотностях позволяли строить верные гипотезы. Научные теории растут и расширяются, вбирая в себя новые знания, но их надежная и проверенная основа остается прежней. Таким образом, наука всегда включает старые, подтвержденные знания в более полную картину, которая возникает при очередном расширении возможностей и для экспериментальных наблюдений, и для теоретических исследований. Перемены не обязательно означают, что старые правила неверны; они могут означать, к примеру, что в мельчайших масштабах, где были выявлены новые компоненты, эти правила уже не применимы. Так что массив наших знаний может включать прежние идеи и при этом расширяться со временем, хотя, скорее всего, за его пределами всегда будет лежать обширная область неизведанного. Как путешествия всегда очень интересны, хотя никто не в силах побывать в каждой точке планеты (не говоря уже о космосе), так и расширение представлений о природе материи и Вселенной обогащает нашу жизнь. А неизведанное всегда рядом, оно зовет и вдохновляет на дальнейшие исследования.
В моей собственной области исследований – физике элементарных частиц – рассматриваются все более короткие расстояния между частицами; цель нашей работы – изучать все более крохотные компоненты материи. В текущих экспериментальных и теоретических исследованиях ученые, забираясь все глубже, пытаются раскрыть внутренние тайны материи. Но она, несмотря на часто используемую аналогию, не похожа на русскую матрешку, где в уменьшенном масштабе повторяются точно такие же элементы. Изучение все более мелких расстояний между частицами интересно еще и тем, что правила в этом мире могут меняться с изменением масштабов. Могут проявляться совершенно новые взаимодействия и силы, действие которых на предыдущем уровне исследований, т. е. на больших расстояниях, невозможно было уловить.
Понятие масштаба, которое говорит физикам, о каких размерах и энергиях в данном исследовании идет речь, очень важно для понимания научного прогресса, как и многих других аспектов окружающего мира. Исследования показали, что далеко не во всех процессах ведущую роль играют одни и те же законы физики. Нам приходится соотносить и сравнивать между собой концепции, применимые к явлениям разных масштабов: на одном масштабе лучше применимы одни законы, на другом ведущую роль играют другие. Категоризация явлений и объектов по масштабу позволяет уложить все, что нам известно, в единую непротиворечивую картину.
В этой главе мы увидим, как разделение по масштабам – определение того, о каком масштабе в данном случае идет речь – помогает прояснить идеи (и не только научные), а также то, почему тонкие свойства строительных «кирпичиков» материи так сложно заметить на тех расстояниях, с какими мы имеем дело в повседневной жизни. Разбираясь с этими вопросами, мы поговорим о том, что означают в науке слова «верно» и «неверно» и почему даже радикальные на первый взгляд открытия не обязательно вызывают резкие изменения в наших устойчивых представлениях о мире.
О невозможном
Люди нередко путают развивающееся научное знание с незнанием, а открытие новых физических законов – с полным отсутствием до этого события каких бы то ни было надежных правил. Во время недавней поездки в Калифорнию у меня произошел интересный разговор со сценаристом Скоттом Дерриксоном, который помог мне выделить источник некоторых из этих неверных представлений. В тот момент Скотт работал над парой сценариев, в которых рассматривалась потенциальная связь между наукой и явлениями, которые, как он подозревал, ученые отбросили бы как сверхъестественные. Желая избежать серьезных ошибок, Скотт решил рассказать сюжет своей выдуманной истории физику – а именно мне. Так что мы встретились за ланчем в уличном кафе, чтобы обменяться мыслями и насладиться солнечным лос-анджелесским днем.
Скотт знал, что сценаристы зачастую неверно представляют науку, но хотел, чтобы именно его истории о привидениях и путешествиях во времени были написаны с разумной долей научной достоверности. Особая трудность состояла в том, что он как сценарист должен был представить своей аудитории не просто описание интересных новых явлений, но и преподнести их эффектно и увлекательно. Не имея специального образования, Скотт тем не менее был сообразителен и восприимчив к новым знаниям. Поэтому я объяснила ему, почему его сюжеты, как бы изобретательны и хороши они ни были, всегда будут несостоятельными с точки зрения науки.
В истории, возразил в ответ Скотт, не раз возникали ситуации, когда какие-то явления, считавшиеся до поры невозможными, оказывались вполне реальными. Разве ученые не отнеслись поначалу с недоверием к теории относительности? Кто мог предположить, что случайность играет в фундаментальных физических законах какую-то роль? Несмотря на большое уважение к науке, Скотт считал, что ученые нередко ошибаются в том, к каким последствиям приведут их открытия.
Некоторые критики идут еще дальше и утверждают, что предсказания ученых по определению сомнительны. Несмотря на данные науки, скептики упрямо твердят, что в них всегда может скрываться какой-то подвох или недосмотр. Как знать, вдруг человек все же может воскреснуть из мертвых или в крайнем случае попасть в Средние века или в Древний Египет.
Конечно, быть восприимчивым ко всему новому – это разумно, да и то, что впереди нас ожидают новые открытия, сомнений не вызывает; тем не менее эти рассуждения скрывают глубокий изъян. Чтобы убедиться в этом, следует подробнее разобрать смысл понятия «масштаб». «Неверующие» в прозорливость ученых игнорируют тот факт, что, хотя всегда будут существовать области неисследованных расстояний и энергий, где могут действовать неизвестные нам пока законы физики, в привычном для нас, «человеческом», измерении существующие законы действуют безотказно. Мы столетиями проверяли их справедливость всеми возможными способами.
Однажды в музее Уитни я встретилась с хореографом Элизабет Стреб – мы обе участвовали в дискуссии о творческих возможностях человека. Выяснилось, что она тоже сомневается в точности и определенности научных знаний применительно к масштабам привычной жизни. Элизабет задала мне примерно тот же вопрос, что немного раньше задавал Скотт: «Не могут неизвестные нам законы природы, действующие в отношении крохотных измерений, наличие которых предполагают физики, воздействовать на нас – на то, как мы двигаемся, например? Мы их не видим и не чувствуем, а они влияют на нас?»
Работы Элизабет прекрасны, ей удалось невероятно глубоко проникнуть в философию танца и движения. Причина же, по которой мы не можем определить, существуют ли дополнительные измерения и какую роль они играют во Вселенной, заключается в том, что они слишком малы. Мы до сих пор не зарегистрировали их влияния ни на один параметр из всего спектра наблюдаемых величин. А чтобы дополнительные измерения влияли на движение тела, их существование должно вызывать в окружающем мире намного более серьезные последствия. Разумеется, если бы такое влияние было, мы давно обнаружили бы его результаты. Поэтому мы точно знаем, что основы танца нисколько не изменятся, даже если мы гораздо лучше поймем квантовую гравитацию. Ее действие слишком слабо по отношению к любым явлениям, заметным в человеческом масштабе.
В прошлом ученые часто ошибались, потому что еще не могли исследовать очень маленькие или очень большие расстояния и скорости или чрезвычайно высокие энергии. Это вовсе не означало, что ученые, подобно луддитам, отказывались от прогресса. Просто они полностью доверяли самым современным на тот момент математическим описаниям мира и сделанным с их помощью прогнозам относительно сути и поведения объектов и явлений, которые тогда можно было наблюдать. Явления, считавшиеся учеными прошлого невозможными, на самом деле могли иметь место и иногда действительно происходили на расстояниях или скоростях, с которыми они никогда прежде не имели дела. И, разумеется, ученые тогда не могли знать о будущих идеях и теориях, которые в конце концов утвердились для тех самых крохотных расстояний или громадных энергий.
Когда ученые говорят, что им что-то известно, это означает лишь, что у них есть определенные мысли и теории, предсказания которых хорошо проверены в определенном диапазоне расстояний или энергий. Такие мысли и теории не обязательно представляют собой фундаментальные физические законы. Это просто правила, подтвержденные надежными экспериментами в диапазоне параметров, доступных сегодняшней технике. Все это не означает, что данные законы никогда не опровергнут и не дополнят новые. Законы Ньютона верны, но не применимы для скоростей, близких к скорости света, где действует теория Эйнштейна. Законы Ньютона одновременно и верны, и неполны. Они применимы в ограниченной области.
Более совершенные знания, которые мы получаем с помощью более точных измерений, – всегда шаг вперед, предвещающий новые, подчас прорывные концепции. Нам сегодня известны многие явления, которые древние не могли даже представить себе, не то что обнаружить, ведь оборудование для наблюдений в те времена было примитивным с современной точки зрения. Так что Скотт был прав: иногда ученые ошибаются, считая невозможным то, что в конце концов оказывается реальностью. Но это не значит, что не существует никаких правил. Призраки и путешественники во времени не появятся в наших домах, и инопланетные существа не выйдут неожиданно из стен. Может оказаться, что дополнительные пространственные измерения существуют, но они крохотные, или особым образом изогнутые, или еще каким-то образом скрыты от наблюдений, иначе как объяснить, почему до сих пор не получено никаких свидетельств их существования.
Необычные явления действительно могут иметь место. Но происходят они в масштабах, чрезвычайно трудных для обычного человеческого восприятия. Если такие явления навсегда останутся для нас абсолютно непостижимыми, то особого интереса ученых они не вызовут. Объективно говоря, они не представляют интереса и для писателей-фантастов, поскольку никак не могут повлиять на нашу повседневную жизнь.
Понятно, что нефизиков интересуют в первую очередь те «странные» явления, которые мы можем наблюдать. Как говорил Стивен Спилберг в дискуссии о научно-фантастическом кино, странный мир, который нельзя представить на киноэкране и в который не могут попасть герои фильма, не слишком интересен зрителю (о чем свидетельствует забавное доказательство на рис. 1). Интересен мир, в который можно попасть и который можно заметить. И абстрактные идеи, и художественный вымысел литератора невозможны без воображения, но типы воображения в них существенно различаются. Если какие-то научные идеи применимы только в условиях, далеких от параметров нашей повседневной земной жизни, они тем не менее представляют собой существенную часть описания физического мира, но вряд ли попадут в фильм.
Дело просто в том, что третье измерение плотно скручено и слишком мало, чтобы наблюдать его при нормальных энергиях.
Поворот не в ту сторону
Несмотря на четкую классификацию масштабов в науке, многие люди, пытаясь понять сложные вещи в окружающем мире, ошибочно сокращают себе путь к истине. Иногда это выливается в слишком буквальное толкование теорий. Вообще, неверное приложение научных знаний – явление не новое. В XVIII в., когда ученые активно изучали в лабораториях магнетизм, люди, далекие от науки, придумали «животный магнетизм» – некие «жизненные токи», присущие всем живым существам. И лишь в 1784 г. французская Королевская комиссия, созданная по указу Людовика XVI (среди прочих в нее входил Бенджамин Франклин), формально опровергла эту теорию.
Сегодня подобные неверные экстраполяции часто связаны с квантовой механикой, когда ее пытаются применить на макроуровне, где ее следствия, как правило, усредняются и не оставляют измеримых следов[6]. Меня тревожит, что столько людей вокруг всерьез воспринимают идеи, высказанные, к примеру, Рондой Берн в ее бестселлере «Тайна»[7], о том, что позитивные мысли притягивают богатство, здоровье и счастье. Равно как тревожит и следующее утверждение Берн: «Я никогда не изучала физику в школе, тем не менее когда я читала сложные книги по квантовой физике, то прекрасно их понимала, потому что хотела понять. Изучение квантовой физики помогло мне глубже проникнуть в тайну на энергетическом уровне».
Еще пионер квантовой механики нобелевский лауреат Нильс Бор заметил: «Если квантовая механика не вызывает у вас легкого головокружения, значит, вы ее не понимаете». К сожалению, квантовая механика печально известна большим количеством неверных интерпретаций. Наш язык и вообще стиль мышления происходят от классической логики, которая, разумеется, не берет в расчет квантовую механику. Но это не означает, что квантовой логикой можно объяснить любое непривычное явление. Тем не менее даже без глубокого знания квантовой механики с ее помощью можно делать верные предсказания. Так, можно наверняка утверждать, что квантовая механика не имеет отношения к «тайне» Ронды Берн и ее так называемому принципу притяжения между людьми, а также далекими друг от друга предметами или явлениями. На больших расстояниях, о которых идет речь, квантовая механика не может играть такой роли. Квантовая механика не имеет отношения и ко многим другим соблазнительным идеям, которые ей нередко приписывают. Невозможно изменить ход эксперимента пристальным взглядом; квантовая механика не отвергает возможность делать достоверные предсказания, а точность измерений в большинстве случаев ограничена чисто технически и не обусловлена принципом неопределенности.
Подобные заблуждения стали главной темой удивительного разговора, который произошел у меня с Марком Висенте, режиссером фильма «Кроличья нора, или Что мы знаем о себе и Вселенной». Этот фильм – настоящая головная боль ученых: в нем утверждается, что человеческий фактор влияет на ход экспериментов. Я не была уверена в плодотворности этой дискуссии, однако времени у меня было много и его нужно было чем-то занять. Уже несколько часов я сидела на летном поле аэропорта Dallas-Fort Worth и дожидалась, пока механики выправят легкую вмятину в крыле самолета (один из членов экипажа с готовностью пояснил нам, что сначала вмятину эту сочли слишком мелкой, но потом, на нашу беду, «измерили техническими средствами»).
Было очевидно, что, прежде чем начинать разговор с Марком, необходимо выяснить, как он сам относится к своему фильму. Я была знакома с его работой по отзывам многочисленных слушателей на лекциях, часто задававших мне странные вопросы об увиденном. Надо сказать, что ответ Марка немало удивил меня. Он изменил курс на 180° и признался, что первоначально подходил к науке с предубеждением, но теперь считает свои прежние взгляды заблуждением. В конце концов Марк пришел к выводу: то, что он показал в фильме, – не наука. Возможно, рассказ о явлениях, связанных с квантовой механикой, на человеческом уровне – естественно, поверхностный, иначе просто и быть не может – устраивает многих зрителей, но это не делает его корректным с научной точки зрения.
Но даже если новые теории требуют радикально новых допущений – как, безусловно, обстояло дело с квантовой механикой, – то рано или поздно веские научные аргументы и эксперименты помогают определить их истинность. Это не волшебство. Научный метод, а также данные экспериментов, как и стремление к логичности и непротиворечивости, – надежные инструменты, позволяющие ученым выходить за пределы интуитивного понимания и повседневных масштабов и разрабатывать странные на первый взгляд теории относительно явлений иных, труднодостижимых масштабов.
В следующем разделе показано, как представление о масштабе систематически помогает объединять различные теоретические концепции в единое непротиворечивое целое.
Эффективные теории
Параметр среднего роста человека находится примерно на середине шкалы (если строить ее в степенях числа десять, т. е. в логарифмическом масштабе) между мельчайшим вообразимым размером и громадностью Вселенной[8]. Мы очень велики по сравнению с элементами внутренней структуры материи и чрезвычайно малы по сравнению со звездами, галактиками и пространством Вселенной. Все очень просто: легче всего человек «понимает» те размеры, которые может воспринять с помощью пяти чувств или простейших измерительных инструментов. Более «далекие» масштабы мы осваиваем путем наблюдений и логических умозаключений. Может показаться, что по мере удаления от непосредственно видимых и измеримых величин появляются величины все более абстрактные и трудные для понимания. Но техника вкупе с теорией позволяет нам познать природу материи в громадном диапазоне размеров.
Для любого участка этого обширного диапазона – от крохотных объектов, исследуемых в Большом адронном коллайдере, до галактик и самого космоса – сегодня имеются соответствующие научные теории. Для объекта каждого размера внутри этого диапазона и соответствующих расстояний могут действовать разные законы. Физикам приходится иметь дело с огромными объемами информации в очень большом диапазоне масштабов. Хотя фундаментальные законы физики, действующие на крупных масштабах, часто работают и на самых крохотных расстояниях, это не означает, что любые расчеты в энергетических масштабах удобно проводить с применением этих законов. Если для получения точного ответа на некий научный вопрос можно не задействовать внутреннюю структуру объекта или какие-то дополнительные обоснования, мы этого и не делаем, а применяем более простые правила.
Физика – и это одна из ее важнейших особенностей – дает нам представление о том, на каком диапазоне шкалы находятся те или иные измерения или предсказания в соответствии с доступным нам уровнем точности, и позволяет проводить расчеты сообразно этому. Прелесть такого взгляда на мир в том, что мы можем сосредоточиться на масштабе, значимом для интересующих нас объектов или явлений, выделить действующие в этом масштабе элементы, а затем вывести и применить законы, по которым эти элементы взаимодействуют между собой. Формулируя теории и проводя вычисления, ученые усредняют или просто игнорируют (иногда сами того не сознавая) физические процессы, проходящие в неизмеримо малых масштабах. Если это возможно, мы отбираем значимые – релевантные – факты и отбрасываем подробности, стараясь сосредоточиться на самом оптимальном участке диапазона. Это единственный способ разобраться в невообразимо плотном массиве информации.
Всегда имеет смысл отбросить мелочи и сосредоточиться на главном, не отвлекаясь на незначимые детали. Недавняя лекция профессора психологии из Гарварда Стивена Косслина напомнила мне, как ученые – и люди вообще – предпочитают работать с информацией. Во время эксперимента, который лектор проводил с аудиторией, он просил нас следить за отрезками, которые появлялись на экране один за другим. Отрезки имели направление (север, юго-восток и т. д.), а все вместе образовывали ломаную линию (рис. 2). Нас попросили закрыть глаза и описать увиденное. Выяснилось, что, хотя наш мозг способен удерживать в памяти лишь несколько отдельных отрезков, мы можем вспомнить гораздо более длинные последовательности, сгруппировав отрезки в повторяющиеся формы. Думая в масштабах целого, а не отдельного отрезка, мы можем удержать в памяти всю ломаную.
Практически во всем, что мы видим, слышим, ощущаем на вкус, запах или прикосновение, мы можем выбирать: сосредоточиться ли нам на подробностях, приблизившись к объекту, или, наоборот, рассматривать «картину в целом» – с иными приоритетами. Что бы мы ни делали – разглядывали произведение искусства, дегустировали вино, читали философский трактат или планировали отпуск, – мы автоматически мыслим двумя категориями: то, что нас в данный момент интересует – будь то размеры, ароматы, идеи или расстояния, – и то, что в данный момент для нас несущественно.
Вообще, сосредоточиться на главном и забыть на время о структурах слишком мелких, чтобы быть значимыми, полезно во многих случаях. Вспомните, как вы поступаете, когда пользуетесь каким-нибудь картографическим сервисом вроде Googlemaps и смотрите на маленький экран своего iPhone. Если вы едете или идете издалека, то сначала смотрите на общую карту, чтобы примерно понять, где место назначения находится относительно других знакомых мест. Затем, рассмотрев общую картинку, переходите к подробностям. На первом шаге вам не нужны лишние факты, вы просто хотите сориентироваться. Но, когда вы переходите к конкретным деталям своего путешествия – если надо найти, например, определенную улицу, – подробности, которые прежде были несущественны, начинают играть главную роль.