Полная версия
Генезис. Небо и Земля. Том 1. История
§222. Вследствие принципа причинности Эйнштейна (1917) любое событие может оказать причинно-следственное влияние только на те события, которые происходят позже него, и не может оказать влияние на любые события, совершившиеся раньше него. [467] Инвариантность причинно-следственной связи в теории относительности связана с принципом близкодействия, которым установлено, что скорость передачи причинного взаимодействия конечна и не может превышать скорости света в вакууме. В отличие от физики Ньютона, основанной на принципе дальнодействия, теория относительности базируется на физическом принципе близкодействия, что является следствием этого постулата причинности для временной последовательности событий и независимости скорости света от выбора системы отсчета. Причинность обладает следующими свойствами: 1. Причинность есть отношение не между вещами, а между событиями; 2. Условие, по которому скорость причинного действия конечна и не может превышать скорости света в вакууме однозначно определяет условие возможности существования причинной связи между двумя событиями: причинно связанными могут быть лишь такие события, квадрат расстояния между которыми в трехмерном пространстве не превышает величины разделённые времениподобным интервалом. В теории относительности причинно связанные события находятся на времениподобных линиях в пространстве Минковского; 3. Причинность релятивистски инвариантна, то есть два события, являющиеся следствием и причиной в одной инерциальной системе отсчета, являются следствием и причиной и во всех остальных инерциальных системах отсчёта, движущихся относительно её со скоростью, меньшей скорости света. Инвариантность причинности вытекает из физического принципа близкодействия.
§223. В 1915—1917 годах Альберт Эйнштейн опубликовал ряд работ по общей теории относительности, в которых он описал гравитацию как геометрическое свойство151 пространства-времени. [468] Эйнштейн применил свою общую теорию относительности к структуре Вселенной в целом. Поскольку в то время не было известно доказательств существования динамической Вселенной, Эйнштейн ввел в уравнения поля «космологическую постоянную», чтобы теория могла предсказать статическую Вселенную. Модифицированные уравнения поля предсказывали статическую Вселенную замкнутой кривизны в соответствии с пониманием Эйнштейном принципа Маха. [469] Эта модель стала известна как мир Эйнштейна или статическая Вселенная Эйнштейна. Впоследствии данные утверждения о космологической постоянной и статической модели Эйнштейном (1931) были пересмотрены, когда он исследовал модель расширяющейся Вселенной, в которой плотность материи остается постоянной из-за непрерывного создания материи – процесса, который он связал с космологической постоянной. [470]
§224. Харлоу Шепли (1917—1918) предложил модель нашей Галактики, согласно которой звёзды и туманности образуют плоскую линзообразную систему диаметром 300 000 световых лет и толщиной 30 000 световых лет с центром, расположенным в направлении созвездия Стрельца, а шаровые скопления образуют почти сферическую концентричную с ней систему такой же протяжённости в плоскости Млечного Пути. [471] Солнце, согласно модели Шепли, находится на расстоянии 50 000 световых лет от центра Галактики. В дальнейшем шкала галактических расстояний была пересмотрена, но общая схема строения Галактики подтверждена.
§225. Эмми Нётер (1918) доказала теорему, что каждой непрерывной симметрии физической системы соответствует некоторый закон сохранения: однородности времени соответствует закон сохранения энергии, однородности пространства соответствует закон сохранения импульса, изотропии пространства соответствует закон сохранения момента импульса, калибровочной симметрии соответствует закон сохранения электрического заряда и так далее. [472] Теорема обычно формулируется для систем, обладающих функционалом действия, и выражает собой инвариантность лагранжиана по отношению к некоторой непрерывной группе преобразований. Если действие инвариантно относительно n-параметрической непрерывной группы преобразований, то существует n независимых законов сохранения. Теорема Нётер формулирует достаточное условие существования законов сохранения. Однако это условие не является необходимым, поэтому могут существовать законы сохранения, не следующие из неё. [473] Известна теорема, формулирующая необходимые и достаточные условия существования законов сохранения. [474] В теоретической физике выражения, стоящие под знаком дивергенций152, называются токами. Если лагранжевы производные равны нулю (выполняются уравнения Эйлера), то дивергенции токов обращаются в нуль. Следствием этого являются дифференциальные законы сохранения.
§226. Энни Джамп Кэннон с коллегами (1918—1924) из Гарвардской обсерватории под руководством Пикеринга создали Каталог Генри Дрейпера (Henry Draper Catalogue, HD), содержащий спектроскопическую информацию о 225 300 ярких звёздах светимостью до 9m, пронумерованных в простом порядке возрастания их прямых восхождений. [475] Каталог был назван в честь астронома Генри Дрейпера, чья вдова пожертвовала деньги на его создание. При подготовке данного каталога первым результатом, который лег в его основу, стал Каталог звездных спектров Дрейпера, подготовленный Пикерингом и опубликованный в 1890 году. [476] Каталог был первой попыткой систематического изучения спектров звёзд. Спектры звёзд были отсортированы по так называемой гарвардской классификации. Эта классификация используется до сих пор и лежит в основе современной астрофизики. Позже были опубликовано добавление – Henry Draper Extension (HDE), содержащее данные о более чем 400 тысяч звёзд. [477]
§227. После идентификации Хартманом межзвездного поглощения кальция межзвездный натрий был обнаружен Мэри Леа Хегер (1919) путем наблюдения стационарного поглощения от линий атома «D» на 589,0 и 589,6 нанометров в направлении Дельта Ориона и Бета Скорпиона. [478]
§228. Эрнест Резерфорд (1919) выяснил, что ядерные трансформации могут быть источником энергии Солнца, когда в ходе опытов увидел, что ядра азота, обстреливаемые быстродвижущимися альфа-частицами, преобразуются в ядра кислорода. [479]
§229. Артур Стэнли Эддингтон153 в 1919 году экспериментально в ходе экспедиции для наблюдения затмения на португальский остров Принсипи в Африке, своими астрономическими расчетами подтвердил отклонение лучей света в поле тяготения Солнца. [480] Термин «линза», подразумевающий отклонение света из-за гравитации, был использован Оливером Джозефом Лоджем (1919), который отметил, что «недопустимо говорить, что гравитационное поле Солнца действует как линза, поскольку у него нет фокусного расстояния». [481]
§230. Британский физик Фрэнсис Уильям Астон (1920) обнаружил, что суммарный эквивалент массы четырех атомов водорода тяжелее, чем суммарная масса одного атома гелия (He-4), что подразумевало, что чистая энергия может быть высвобождена путем объединения атомов водорода вместе, чтобы сформировать гелий, что дало первые намеки на механизм, с помощью которого звезды могли бы производить энергию в измеряемых количествах. [482] Главным сторонником протон-протонной цепной реакции (РР-реакции) как первичной системы, управляющей Солнцем, стал Эддингтон. Нейтроны от термоядерного синтеза были впервые обнаружены сотрудниками Эрнста Резерфорда. Эксперимент был разработан Марком Олифантом и включал ускорение протонов к цели при энергиях до 600 тысяч электрон-вольт. [483] В 1933 году Кавендишская лаборатория получила в подарок от американского физико-химика Гилберта Ньютона Льюиса несколько капель тяжелой воды. Ускоритель использовался для стрельбы тяжелыми ядрами водорода дейтронами по различным целям. Работая с Резерфордом и другими учеными, Маркус Лоренс Элвин «Марк» Олифант (1934) открыл ядра гелия-3 (гелионы) и трития (тритоны). [484] Теория была подтверждена Гансом Бете в 1939 году, который показал, что бета-распад и квантовое туннелирование154 в ядре Солнца могут превратить один из протонов в нейтрон и таким образом произвести дейтерий, а не дипротон (гелий-2). [485] Затем дейтерий будет плавиться через другие реакции, чтобы еще больше увеличить выход энергии. За эту работу Бете получил Нобелевскую премию по физике 1967 года.
§231. Эйнштейн (1920) в своей знаменитой лекции «Эфир и теория вероятности», заключая свою работу вывел, «что общая теория относительности наделяет пространство физическими свойствами, что не может привести к отрицанию существования эфира. Если рассматривать общую теорию относительности, то пространство невозможно без эфира. В утверждении обратного пространство не сможет распространять свет, при этом будет отсутствовать масштабы и время, а также пространственно-временные расстояния, как физические явления. При этом эфир нельзя рассматривать, как состоящий из прослеживаемых во временном диапазоне частей. Такими свойствами может обладать только весомая материя. Эфир должен быть недвижим». [486] Приходя к такому заключению Эйнштейн писал: «Существует существенное отличие между эфиром общей теории относительности от эфира Лоренца155, так как его состояние в любом месте можно определить при помощи дифференциальных уравнений материи и состояния эфира в соседних точках. В эфире Лоренца при отсутствии электромагнитных полей, кроме эфира ничто не зависит. Теоретически эфир общей теории относительности можно преобразовать в эфир Лоренца, если произвести замену всех определяющих его функции пространственных координат на постоянные и не обращать внимание его причины, которые описывают его состояние. Если говорить проще, то эфир общей теории относительности можно получить из эфира Лоренца, релятивируя его». При этом Эйнштейн сказал, что условием восприятия теории эфира в сочетании со специальной теорией относительности является то, что эфиру не следует приписывать состояние движения. Этот аргумент был сделан ученым из рассуждения, «что путем расширения понятия физического объекта можно описать такие объекты, к которым не применимо понятие движения. Такие объекты не состоят из отдельных частиц, которые можно исследовать во времени. Если вспомнить высказывание Минковского, то не всякое образование способно заполнить четырехмерное пространство и которое можно представить из мировых линий. Специальная теория относительности исключает эфир, как вещество, состоящее из отдельных частиц, поведение которых можно изучать во времени. Но теория существования эфира не является противоречивой относительно специальной теории относительности». Эйнштейн напоминал, что эфир является специфической средой, которая лишена всех механических и кинетических свойств, но одновременно определяющая механические и электромагнитные процессы: «с точки зрения специальной теории относительности гипотеза эфира лишена содержания. Поэтому если рассматривать уравнения электромагнитного поля то, кроме плотности электрических зарядов, можно говорить о напряжённости поля. Электромагнитные явления в пустоте описываются в уравнениях законами, которые определяются другими физическими величинами. Электромагнитное поле – это несводимая к чему-либо реальность, которая не нуждается в создании новых постулатов в отношении существования однородного изотопного эфира, что приведет к определению поля, как состояния данного эфира. Если смотреть с другой стороны, то можно привести некоторые аргументы в пользу гипотезы об эфире. Отрицание эфира – это, в конечном счете, принятие, так как пустое пространство не может иметь никаких физических свойств. С такой трактовкой не соглашаются основные факты механики». Теория относительности, которая способна была объяснить электромагнитные явления, не прибегая к использованию этой концепции вообще, разрушила теоретические и философские основания использования понятия эфира в физике. Таким образом попытки включения эфира стали исчезать из общепринятого физического описания. О таком положении Роберт Лафлин (2005) не без иронии сказал156: «Современная концепция вакуума пространства, подтвержденная каждый день экспериментом, является релятивистским эфиром. Но мы не называем это так, потому что это табу» [487]
§232. В 1918 году немецкий математик Герман Клаус Гуго Вейль предпринял попытку создать первую единую теорию поля, или теорию всего, в которой электромагнитное и гравитационное поля являлись бы геометрическими свойствами пространства-времени. [488] Немецкий математик Теодор Калуца решился предложить свой оригинальный подход к единой теории поля. В апреле 1919 году Калуце удалось посредством введения «свернувшегося» пятого измерения доказать возможность объединить уравнения электромагнетизма и гравитации в обычном 4-мерном пространстве. Таким образом, он пришел к выводу, что в 5-мерном пространстве гравитация и электромагнетизм едины. Калуца изложил свою теорию в письме к Эйнштейну, и тот посоветовал ему продолжить занятия этой темой. Эйнштейн опубликовал работу Калуцы (1921), в которой расширено пространство Минковского до 5-мерного пространства и получены из уравнений общей теории относительности классические уравнения Максвелла. [489] Шведским физиком Оскаром Клейном (1926) было предложено обоснование ненаблюдаемости пятого измерения (его компактности). [490] Теория Калуцы-Клейна – одна из моделей гравитации, позволяющая объединить два фундаментальных физических взаимодействия: гравитацию и электромагнетизм157. В 1980-х Майкл Грин и Джон Шварц показали, что теория суперструн способна объединить как гравитацию с электромагнетизмом, так и сильные и слабые взаимодействия. Теория Калуцы-Клейна оперирует 10-мерным пространством, притом что 6 «лишних» измерений считаются «свёрнутыми». Эта теория предполагает, что десять гравитационных потенциалов Эйнштейна и четыре электромагнитных потенциала связаны с коэффициентами линейного элемента риманого пространства, которое, кроме четырех обычных измерений, содержит еще одно пятое измерение. При этом уравнения движения электрических частиц также в электромагнитных полях принимают форму уравнений геодезических линий. Если же они трактуются как радиальные уравнения, рассматривая материю как вид распространения волны, то почти само собой приходит дифференциальное уравнение второго порядка, которое можно рассматривать как обобщение обычного волнового уравнения.
§233. Бертиль Линдблад (1922) обнаружил зависимость величины поглощения в ультрафиолетовой части спектра в звёздах поздних спектральных классов от их светимости и правильно отождествил источник поглощения с молекулой циана, разработав на основе этого эффекта метод определения светимости слабых холодных звёзд по спектрам с низкой дисперсией158. [491]
§234. Шведский астроном Гуннар Малмквист (1922) описал эффект в наблюдательной астрономии, приводящий к преимущественному обнаружению объектов с высокой светимостью, который получил название смещение или сдвиг Малмквиста. [492] Поскольку наблюдаемые звёзды и галактики кажутся слабее при большем удалении от наблюдателя, то видимая звёздная величина с расстоянием будет увеличиваться до тех пор, пока не превысит предельное значение для такого обзора. Объекты с более высокой светимостью могут наблюдаться с большего расстояния, что может создать ложную зависимость, дающую усиление блеска с расстоянием. При наблюдении области неба мы можем видеть звёзды только до определённой звёздной величины. Нам будут видны далёкие звёзды высокой светимости и близкие звёзды, причём как яркие, так и слабые. Таким образом, будет казаться, что до определённого расстояния звёзд высокой светимости гораздо больше, чем слабых. На самом же деле, слабых звёзд гораздо больше, но они не попадают в наблюдаемую выборку, поскольку слишком слабые. Смещение в сторону звёзд большей светимости при наблюдении участка неба влияет на определение среднего значения абсолютной звёздной величины и среднего расстояния до группы звёзд. Поскольку звёзды высокой светимости видны на больших расстояниях, то может казаться, что рассматриваемая выборка находится в среднем дальше, а каждая звезда вследствие этого будет считаться имеющей более высокую светимость. В статистике данное смещение является систематической ошибкой и влияет на результаты обзоров в выборках, ограниченных по видимой звёздной величине, в которые не попадают звёзды, видимые звёздные величины которых превышают определенное значение.
§235. Первая из нестационарных моделей Вселенной – космологическая модель Александра Александровича Фридмана (1922), описывает однородную изотропную, в общем случае нестационарную Вселенную с веществом, обладающую положительной, нулевой или отрицательной постоянной кривизной. [493] Эта работа учёного стала первым основным теоретическим развитием общей теории относительности после работ Эйнштейна. Фридман составил уравнение, описывающее развитие во времени однородной и изотропной Вселенной (Вселенной Фридмана) в рамках общей теории относительности, которое может быть проинтегрировано аналитически для двух важных предельных случаев – вселенной, заполненной пылью, и вселенной, заполненной излучением. [494] Фридман указал на расширение Вселенной, экстраполируя ситуацию в прошлое, исходя из того, что в самом начале вся материя Вселенной была сосредоточена в компактной области, из которой и начала свой разлёт. Поскольку во Вселенной очень часто происходят процессы взрывного характера, то у Фридмана возникло предположение, что и в самом начале её развития также лежит взрывной процесс – Большой взрыв, который произошёл одновременно и повсюду во Вселенной, заполнив пространство очень плотным веществом, из которого через миллиарды лет образовались наблюдаемые тела Вселенной – галактики, звёзды, Солнце и планеты, в том числе Земля и всё что на ней.
§236. С 1919 года Эдвин Пауэлл Хаббл начал работать на самом крупном астрономическом инструменте того времени на 2,5-метровом телескопе Хукера в обсерватории Маунт-Вилсон (Калифорния, США). [495] В 1922 году Хаббл определил разницу между эмиссионными и отражательными туманностями, и предложил подразделить наблюдаемые туманности на внегалактические (галактики) и галактические (газопылевые). [496] Большинство учёных тогда были уверены, что Вселенная состоит из единственной галактики – Млечного Пути. Хаббл опроверг это мнение, наблюдая за несколькими спиральными туманностями, включая Туманность Андромеды и Треугольник. Он выяснил, что эти туманности расположены слишком далеко, чтобы быть частью Млечного Пути. В 1924—1926 годах он обнаружил на фотографиях некоторых ближайших галактик звёзды, и доказал, что они представляют собой системы, подобные нашей галактике Млечный Путь. [497] Хаббл измерил расстояние до других галактик, используя цефеиды (переменные звезды), доказав, что в действительности это были отдельные галактики, расположенные за пределами нашей собственной. Это открытие фундаментальным образом изменило научное видение Вселенной.
§237. Теория нестационарной вселенной была поддержана целым рядом исследований, которые интерпретировали модель де Ситтера. Герман Клаус Гуго Вейль (1922), рассматривая модели де Ситтера и Эйнштейна, отметил для первого что, если мир не был бы статичным в целом, то отсутствие материи в нем соответствовало бы физическим законам; а для второго имеется статичный мир, который не может существовать без горизонта масс. [498] Артур Эддингтон (1923) посчитал естественным рассматривать формы де Ситтера и Эйнштейна как два предельных случая, причем обстоятельства реального мира являются промежуточными между ними. [499] Карл-Вильгельм Вирц (1924) обнаружил слабую корреляцию между угловыми диаметрами и скоростями удаления галактик и предположил, что она может быть связана с космологической моделью де Ситтера. [500]
§238. Джордж Дэвид Биркгоф (1923) сформулировал и доказал теорему, которая утверждает, что любое сферически симметричное решение уравнений вакуумного поля должно быть статичным и асимптотически159 плоским, что означает, что внешнее решение (то есть пространство-время вне сферического, не вращающегося, гравитирующего тела) должно быть задано метрикой Шварцшильда. [501] Идея теоремы Биркгофа состоит в том, что сферически симметричное гравитационное поле должно создаваться каким-то массивным объектом в начале координат; если бы где-то в другом месте была другая концентрация массы-энергии, это нарушило бы сферическую симметрию, поэтому мы можем ожидать, что решение будет представлять изолированный объект160. То есть поле должно исчезать на больших расстояниях, что означает, что такое решение асимптотически плоское. Таким образом общая теория относительности сводится к ньютоновской гравитации в ньютоновском пределе. Впоследствии было найдено, что теорема была опубликована двумя годами ранее норвежским физиком Йоргом Тофте Джебсеном (1921). [502]
§239. Американский физик Артур Комптон в 1923 году в экспериментах с рентгеновским излучением обнаружил эффект некогерентного рассеяния фотонов на свободных электронах; некогерентность означает, что фотоны до и после рассеяния не интерферируют161. Эффект сопровождается изменением частоты фотонов, часть энергии которых после рассеяния передается электронам. [503] В 1927 году Комптон получил за это открытие Нобелевскую премию по физике.
§240. Орест Даниилович Хвольсон (1924) опубликовал в немецком журнале «Astronomische Nachrichten» заметку о том, что луч света далекой звезды может быть отклонен притяжением другой звезды-линзы, в результате чего возникнет второе изображение далекой звезды, при этом он заметил, что угол между этими двумя изображениями будет столь мал, что их нельзя увидеть по отдельности с помощью наземного телескопа. [504,505] В случае, когда наблюдатель, линза и источник находятся на одной прямой, возникнет изображение типа кольца, отмечал Хвольсон. При отклонении взаимного расположения тел от прямой наблюдатель сможет увидеть только участок дуги.
§241. Луи де Бройль (1924) в своей диссертации выдвинул гипотезу, что волновой и квантовый способы описания света не противоречат, а взаимно дополняют друг друга, так как свет одновременно обладает и волновыми и корпускулярными свойствами. [506] Согласно де Бройлю, с каждым микрообъектом связываются, с одной стороны, корпускулярные характеристики – энергия и импульс, а с другой волновые характеристики – частота и длина волны. Закономерности равновесного теплового излучения, фотоэффект, эффект Комптона – служат доказательством квантовых (корпускулярных) представлений о свете как о потоке фотонов. С другой стороны, такие явления, как интерференция, дифракция и поляризация света, подтверждают волновую (электромагнитную) природу света. Формула де Бройля устанавливает зависимость длины волны, связанной с движущейся частицей вещества, от импульса частицы, где длина волны Бройля пропорциональна отношению постоянной Планка или к импульсу, или к произведению массы частицы на ее скорость.
§242. Шатьендра Ната Бозе (1924) в своей лекции по теории излучения и ультрафиолетовой катастрофе, которую он читал в университете Дакки (Бангладеш), предпринял попытку показать, что современная теория неадекватна, поскольку предсказывает результаты, не соответствующие экспериментальным результатам. В процессе описания этого несоответствия Бозе впервые занял позицию, что распределение Максвелла—Больцмана не будет истинным для микроскопических частиц, где флуктуации, обусловленные принципом неопределенности Гейзенберга, будут значительными. Таким образом, он подчеркивал вероятность нахождения частиц в фазовом пространстве, каждое состояние которого имеет объем, и отбрасывал различное положение и импульс частиц. Бозе переработал лекцию в короткую статью под названием «Закон Планка и гипотеза квантов света» и отправил ее Альберту Эйнштейну с просьбой о переводе статьи на немецкий язык и публикации в Zeitschrift für Physik162. Эйнштейн согласился и опубликовал данную работу. [507] Причина, по которой интерпретация Бозе дала точные результаты, основана на том, что, поскольку фотоны неотличимы друг от друга, нельзя рассматривать любые два фотона с одинаковой энергией как два различных идентифицируемых фотона. Эйнштейн в своей первой работе после Бозе руководствовался, как и Бозе, тем фактом, что новый метод дает правильный ответ. [508] Эйнштейн принял эту идею и распространил ее на атомы, сравнив его с корпускулярно-волновым дуализмом, и указал, что некоторые частицы ведут себя не совсем так, как частицы. Во второй работе Эйнштейна с использованием метода Бозе, был предсказан конденсат Бозе—Эйнштейна163, как плотное скопление бозонов (которые являются частицами с целочисленным спином, названными в честь Бозе), что сформировало основу для объяснения сверхтекучести и сверхпроводимости. [509] Интерпретация Бозе теперь называется статистикой Бозе—Эйнштейна. Результат, полученный Бозе, заложил основу квантовой статистики и особенно революционно новой философской концепции неразличимости частиц, признанной Эйнштейном и Дираком. В 1995 году первый бозе-конденсат был получен в Объединённом институте лабораторной астрофизики (JILA) (относящемся к Университету штата Колорадо в Боулдере и Национальному институту стандартов) Эриком Алином Корнеллом и Карлом Эдвином Виманом. Учёные использовали газ из атомов рубидия-87, который был ограничен магнитными полями охлаждён до 170 нанокельвин (1,7⋅10—7 кельвин) и достигал плотности 2,5⋅ 1012 на кубический сантиметр и мог сохраняться более 15 секунд. [510] Были отмечены три первичных признака конденсации Бозе-Эйнштейна: 1) Поверх широкого распределения тепловых скоростей появился узкий пик, который был сосредоточен на нулевой скорости; 2) Доля атомов, находящихся в этом низкоскоростном пике, резко возрастала по мере снижения температуры образца; 3) Пик показал нетепловое, анизотропное распределение скорости, ожидаемое от квантового состояния магнитной ловушки с минимальной энергией, в отличие от изотропного, теплового распределения скорости, наблюдаемого в широкой неконденсированной фракции. За эту работу им, совместно с Вольфгангом Кеттерле из Массачусетского технологического института, была присуждена Нобелевская премия по физике 2001 года. [511]